lenet加入transformer的pytorch代码
时间: 2023-10-09 17:16:12 浏览: 93
很抱歉,但是我只能为您提供文字回答,无法提供完整的代码。以下是一个使用LeNet结构并加入Transformer的PyTorch代码的示例:
```python
import torch
import torch.nn as nn
class LeNetWithTransformer(nn.Module):
def __init__(self):
super(LeNetWithTransformer, self).__init__()
# LeNet layers
self.conv1 = nn.Conv2d(1, 6, 5)
self.relu1 = nn.ReLU()
self.pool1 = nn.MaxPool2d(2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.relu2 = nn.ReLU()
self.pool2 = nn.MaxPool2d(2)
# Transformer layers
self.transformer = nn.Transformer(
d_model=16 * 5 * 5, nhead=8, num_encoder_layers=6, num_decoder_layers=6)
# Fully-connected layers
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.relu3 = nn.ReLU()
self.fc2 = nn.Linear(120, 84)
self.relu4 = nn.ReLU()
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool1(self.relu1(self.conv1(x)))
x = self.pool2(self.relu2(self.conv2(x)))
x = x.view(x.size(0), -1) # Flatten the tensor
# Apply transformer
x = self.transformer(x, x)
x = self.relu3(self.fc1(x))
x = self.relu4(self.fc2(x))
x = self.fc3(x)
return x
# 创建LeNetWithTransformer的实例
model = LeNetWithTransformer()
# 打印模型结构
print(model)
```
希望这能对你有所帮助!如果你还有其他问题,请随时提出。
阅读全文