基于pytorch的segformer
时间: 2023-09-17 19:10:18 浏览: 208
PyTorch-SE-Segmentation
Segformer是一种基于Transformer的图像分割模型,其主要思想是将图像分成若干个块,然后使用Transformer进行特征提取和融合,最后通过一个头部网络进行像素级别的分类。Segformer相比于传统的卷积神经网络分割模型,具有更高的精度和更少的参数,同时也具有更好的可解释性。
在PyTorch中,可以使用以下代码实现Segformer模型:
```
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops.layers.torch import Rearrange
class Segformer(nn.Module):
def __init__(self, num_classes, input_shape=(3, 224, 224), patch_size=16, hidden_dim=384, num_layers=12, num_heads=6):
super(Segformer, self).__init__()
self.input_shape = input_shape
self.patch_size = patch_size
self.hidden_dim = hidden_dim
self.num_layers = num_layers
self.num_heads = num_heads
self.num_classes = num_classes
# Input embedding
self.input_embedding = nn.Sequential(
nn.Conv2d(input_shape[0], hidden_dim, kernel_size=patch_size, stride=patch_size),
Rearrange('b c h w -> b (h w) c')
)
# Transformer encoder
encoder_layer = nn.TransformerEncoderLayer(d_model=hidden_dim, nhead=num_heads)
self.encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
# Output head
self.output_head = nn.Sequential(
Rearrange('b (h w) c -> b c h w', h=int(input_shape[1]/patch_size), w=int(input_shape[2]/patch_size)),
nn.Conv2d(hidden_dim, num_classes, kernel_size=1),
nn.Softmax(dim=1)
)
def forward(self, x):
x = self.input_embedding(x)
x = self.encoder(x)
x = self.output_head(x)
return x
```
其中,`num_classes`为分类数,`input_shape`为输入图像的大小,`patch_size`为块大小,`hidden_dim`为Transformer中每层的隐藏层大小,`num_layers`为Transformer中的层数,`num_heads`为Transformer中的头数。`input_embedding`用来将输入图像分成块并进行嵌入,`encoder`是Transformer编码器,`output_head`用来进行像素级别的分类。
使用以上代码可以创建一个Segformer模型,可以通过以下代码进行训练和评估:
```
model = Segformer(num_classes=2)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# Train
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# Evaluate
with torch.no_grad():
for images, labels in test_loader:
outputs = model(images)
prediction = torch.argmax(outputs, dim=1).numpy()
accuracy = np.mean(prediction == labels.numpy())
print('Accuracy:', accuracy)
```
阅读全文