先搭建CNN 模型的卷积层, 再使用 Transformer 对图像数据和数值数据进行融合, 最后将融合的信息进行回归预测。pytorch实现代码
时间: 2024-02-18 07:03:58 浏览: 193
好的,以下是一个简单的示例代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(3, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.pool = nn.MaxPool2d(2)
self.fc1 = nn.Linear(20 * 5 * 5, 50)
def forward(self, x):
x = F.relu(self.conv1(x))
x = self.pool(x)
x = F.relu(self.conv2(x))
x = self.pool(x)
x = x.view(-1, 20 * 5 * 5)
x = F.relu(self.fc1(x))
return x
class Transformer(nn.Module):
def __init__(self):
super(Transformer, self).__init__()
self.encoder_layer = nn.TransformerEncoderLayer(d_model=50, nhead=5)
self.transformer_encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=2)
def forward(self, x):
x = self.transformer_encoder(x)
return x
class Regression(nn.Module):
def __init__(self):
super(Regression, self).__init__()
self.linear1 = nn.Linear(50, 10)
self.linear2 = nn.Linear(10, 1)
def forward(self, x):
x = F.relu(self.linear1(x))
x = self.linear2(x)
return x
class ImageRegression(nn.Module):
def __init__(self):
super(ImageRegression, self).__init__()
self.cnn = CNN()
self.transformer = Transformer()
self.regression = Regression()
def forward(self, image, numerical):
image_feature = self.cnn(image)
numerical_feature = self.transformer(numerical)
fused_feature = torch.cat((image_feature, numerical_feature), dim=1)
output = self.regression(fused_feature)
return output
```
在这个示例中,我们首先定义了一个简单的CNN模型,将图像数据作为输入,并提取其特征。然后,我们定义了一个Transformer模型,将数值数据作为输入,并提取其特征。最后,我们将两个特征连接在一起,并通过一个线性层对它们进行回归预测。
阅读全文