孤立森林算法matlab代码
时间: 2023-08-01 21:13:18 浏览: 701
孤立森林matalb程序
下面是孤立森林的MATLAB代码实现,其中包括了孤立树和孤立森林的实现:
```matlab
function [IForest, Outliers] = iForest(X, nTrees, sampleSize)
% X: 输入的数据集,每一行表示一个样本
% nTrees: 孤立森林中包含的孤立树数目
% sampleSize: 每个孤立树中包含的样本数目
% IForest: 输出的孤立森林,包含nTrees棵孤立树
% Outliers: 输出的异常值,其中每个元素表示该样本的异常得分
if nargin < 3
sampleSize = 256;
end
if nargin < 2
nTrees = 100;
end
[nSamples, nFeatures] = size(X);
% 构造孤立森林
IForest = cell(nTrees, 1);
for i = 1:nTrees
IForest{i} = iTree(X, sampleSize, 0);
end
% 计算异常得分
Outliers = zeros(nSamples, 1);
for i = 1:nSamples
hTemp = 0;
for j = 1:nTrees
hTemp = hTemp + pathLength(X(i,:), IForest{j});
end
Eh = hTemp/nTrees;
c = cValue(sampleSize);
Outliers(i) = 2^(-Eh/c);
end
end
function Tree = iTree(X, sampleSize, height)
% 构造孤立树
[nSamples, nFeatures] = size(X);
if height >= 30 || nSamples <= 1
% 树的高度达到设定的最大值,或者样本数小于等于1
Tree = struct('left', [], 'right', [], 'splitAttr', [], 'splitValue', [], 'size', nSamples, 'height', height);
return;
end
% 随机选择一个属性和一个分割值
splitAttr = randi(nFeatures, 1);
splitValue = min(X(:,splitAttr)) + rand(1)*(max(X(:,splitAttr))-min(X(:,splitAttr)));
% 选择子样本集
if nSamples > sampleSize
% 如果样本数大于设定的子样本集大小,则随机选择子样本集
subIdx = randperm(nSamples, sampleSize);
Xsub = X(subIdx,:);
else
% 如果样本数小于等于设定的子样本集大小,则使用全部样本
Xsub = X;
end
% 递归构造左子树和右子树
idxLeft = Xsub(:,splitAttr) < splitValue;
idxRight = Xsub(:,splitAttr) >= splitValue;
Tree = struct('left', iTree(Xsub(idxLeft,:), sampleSize, height+1), 'right', iTree(Xsub(idxRight,:), sampleSize, height+1), 'splitAttr', splitAttr, 'splitValue', splitValue, 'size', nSamples, 'height', height);
end
function pl = pathLength(X, Tree)
% 计算样本X在孤立树Tree中的路径长度
pl = 0;
while true
if isempty(Tree.left) && isempty(Tree.right)
% 叶子节点
pl = pl + cValue(Tree.size);
break;
end
if X(Tree.splitAttr) < Tree.splitValue
Tree = Tree.left;
else
Tree = Tree.right;
end
pl = pl + 1;
end
end
function c = cValue(n)
% 计算c(n)
if n <= 1
c = 0;
else
c = 2*harmlog(n-1) - 2*(n-1)/n;
end
end
function h = harmlog(n)
% 计算调和平均数的对数
h = 0;
for i = 1:n
h = h + 1/i;
end
h = log(h);
end
```
其中,`iTree`函数用于构造孤立树,`pathLength`函数用于计算样本在孤立树中的路径长度,`cValue`函数用于计算c(n),`harmlog`函数用于计算调和平均数的对数,`iForest`函数用于构造孤立森林以及计算异常得分。
阅读全文