孤立森林matlab代码
时间: 2023-11-25 14:58:56 浏览: 120
基于孤立森林(Isolation Forest)的数据异常数据检测可视化(Matlab完整源码和数据)
3星 · 编辑精心推荐
孤立森林(Isolation Forest)是一种用于异常检测的机器学习算法。它的主要思想是通过随机的方式来构建一个隔离树(Isolation Tree),然后通过统计样本点在树上的深度来判断其是否为异常点。以下是一个基于 MATLAB 的孤立森林算法的代码实现:
```matlab
function [anomaly_scores, isolation_trees] = isolation_forest(X, n_trees, sub_sample_size)
[n_samples, n_features] = size(X);
if nargin < 3
sub_sample_size = min(256, n_samples);
end
% Build isolation trees
isolation_trees = cell(n_trees, 1);
for i = 1:n_trees
isolation_trees{i} = build_isolation_tree(X, sub_sample_size);
end
% Compute anomaly scores
anomaly_scores = zeros(n_samples, 1);
for i = 1:n_samples
depth_sum = 0;
for j = 1:n_trees
depth_sum = depth_sum + path_length(X(i,:), isolation_trees{j});
end
average_depth = depth_sum / n_trees;
c = c_value(sub_sample_size);
anomaly_scores(i) = 2^(-average_depth/c);
end
end
function tree = build_isolation_tree(X, max_height)
[n_samples, n_features] = size(X);
if n_samples <= 1 || max_height == 0
tree = struct('left', [], 'right', [], 'split_feature', [], 'split_value', []);
return
end
% Randomly choose a feature to split on
split_feature = randi(n_features);
% Randomly choose a split value between the min and max of the feature
split_value = X(randi(n_samples), split_feature);
% Split the data
left_mask = X(:, split_feature) < split_value;
right_mask = ~left_mask;
left_data = X(left_mask, :);
right_data = X(right_mask, :);
% Recursively build the left and right subtrees
tree = struct('left', build_isolation_tree(left_data, max_height-1), ...
'right', build_isolation_tree(right_data, max_height-1), ...
'split_feature', split_feature, ...
'split_value', split_value);
end
function length = path_length(x, tree)
if isempty(tree.left) && isempty(tree.right)
length = 0;
return
end
split_feature = tree.split_feature;
if x(split_feature) < tree.split_value
length = 1 + path_length(x, tree.left);
else
length = 1 + path_length(x, tree.right);
end
end
function c = c_value(n)
if n > 2
c = 2 * (log(n-1) + 0.5772) - 2*(n-1)/n;
elseif n == 2
c = 1;
else
c = 0;
end
end
```
其中,`X` 是一个 `n_samples x n_features` 的矩阵,表示样本数据;`n_trees` 是随机森林中树的数量;`sub_sample_size` 是每个随机森林的样本子集大小。`isolation_forest` 函数用于构建孤立森林并计算每个样本的异常得分;`build_isolation_tree` 函数用于递归地构建隔离树;`path_length` 函数用于计算样本点在树上的深度;`c_value` 函数用于计算常数项。
阅读全文