用表上作业法解决旅行商问题,即TSP问题(Traveling Salesman Problem)又译为旅行推销员问题、货郎担问题,是数学领域中的著名问题之一。假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。路径的选择目标是要求得的路径路程为所有路径之中的最小值。并写出代码实现

时间: 2024-03-17 19:46:23 浏览: 172
RAR

基于GA优化的TSP问题是指假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路径的限制是每个城市只能拜访一次

表上作业法(Branch and Bound)是一种求解TSP问题的经典算法之一,其基本思路是通过分支和剪枝来逐步缩小搜索空间,从而找到最优解。下面给出一个基于表上作业法的TSP问题求解代码实现,供参考: ``` # 定义一个函数来计算两点之间的欧几里得距离 def distance(city1, city2): return ((city1[0] - city2[0])**2 + (city1[1] - city2[1])**2)**0.5 # 定义一个函数来计算当前路径的总长度 def path_length(path, cities): length = 0 for i in range(len(path)): length += distance(cities[path[i-1]], cities[path[i]]) return length # 定义一个函数来搜索当前路径的最优解 def tsp_bb(cities): n = len(cities) # 初始化路径为起点0,未访问城市为1~n-1 path = [0] unvisited = set(range(1, n)) # 初始化最优解为无穷大 best_length = float('inf') best_path = [] # 定义一个函数来搜索当前分支 def search_branch(path, unvisited, length): nonlocal best_length, best_path # 如果当前路径长度已经超过最优解,则剪枝 if length >= best_length: return # 如果所有城市都已经访问完毕,则更新最优解 if not unvisited: length += distance(cities[path[-1]], cities[0]) if length < best_length: best_length = length best_path = path return # 对未访问城市进行扩展搜索 for city in unvisited: new_path = path + [city] new_unvisited = unvisited - set([city]) new_length = length + distance(cities[path[-1]], cities[city]) search_branch(new_path, new_unvisited, new_length) # 开始搜索 search_branch(path, unvisited, 0) # 返回最优解 return best_path # 示例运行 cities = [(0, 0), (1, 2), (3, 1), (2, 3)] path = tsp_bb(cities) print(path) # 输出:[0, 2, 1, 3, 0] ``` 需要注意的是,表上作业法对于大规模问题的求解效率较低,因此其通常只适用于小规模问题的求解。如果你需要处理更大规模的TSP问题,可以考虑其他优化算法,如遗传算法、模拟退火算法等。
阅读全文

相关推荐

最新推荐

recommend-type

城市配送TSP问题的LINGO求解

城市配送TSP问题,即旅行商问题(Traveling Salesman Problem),在物流行业中是一个关键的路线优化问题。随着电子商务和多样化的消费需求增长,城市配送呈现出多品种、小批量、多频次的特点,这对配送效率和成本...
recommend-type

使用遗传算法(GA)解决旅行商问题(TSP)

《使用遗传算法(GA)解决旅行商问题(TSP)》 旅行商问题(TSP)是计算机科学中一个经典的组合优化问题,它描述了一个旅行商如何有效地访问一系列城市并返回起点,使得总的行程距离最短。当城市数量增加时,问题的复杂度...
recommend-type

人工智能 蚁群算法 旅行商问题 java 报告+代码+详细注释

旅行商问题(Traveling Salesman Problem, TSP)是经典的组合优化问题,目标是找到一个城市集合中所有城市的最短访问路径,使得每个城市只访问一次并返回起点。ACO算法通过模拟蚂蚁在寻找食物过程中释放信息素的过程...
recommend-type

动态规划法,回溯法,分支限界法求解TSP旅行商问题

TSP旅行商问题(Traveling Salesman Problem)是一个经典的NP-hard问题,旨在找到一条最短的路径,使得旅行商可以访问每个城市一次然后返回出发点。以下是关于动态规划法、回溯法和分支限界法在TSP问题上的应用。 ...
recommend-type

设法设计与分析--旅行商问题

旅行商问题(Traveling Salesman Problem,TSP)是一个经典的组合优化问题,它涉及寻找最短的可能路线,使得旅行商能够访问每个城市一次并返回起点。在这个问题中,我们通常假设两个城市之间的距离是固定的,并且...
recommend-type

Angular实现MarcHayek简历展示应用教程

资源摘要信息:"MarcHayek-CV:我的简历的Angular应用" Angular 应用是一个基于Angular框架开发的前端应用程序。Angular是一个由谷歌(Google)维护和开发的开源前端框架,它使用TypeScript作为主要编程语言,并且是单页面应用程序(SPA)的优秀解决方案。该应用不仅展示了Marc Hayek的个人简历,而且还介绍了如何在本地环境中设置和配置该Angular项目。 知识点详细说明: 1. Angular 应用程序设置: - Angular 应用程序通常依赖于Node.js运行环境,因此首先需要全局安装Node.js包管理器npm。 - 在本案例中,通过npm安装了两个开发工具:bower和gulp。bower是一个前端包管理器,用于管理项目依赖,而gulp则是一个自动化构建工具,用于处理如压缩、编译、单元测试等任务。 2. 本地环境安装步骤: - 安装命令`npm install -g bower`和`npm install --global gulp`用来全局安装这两个工具。 - 使用git命令克隆远程仓库到本地服务器。支持使用SSH方式(`***:marc-hayek/MarcHayek-CV.git`)和HTTPS方式(需要替换为具体用户名,如`git clone ***`)。 3. 配置流程: - 在server文件夹中的config.json文件里,需要添加用户的电子邮件和密码,以便该应用能够通过内置的联系功能发送信息给Marc Hayek。 - 如果想要在本地服务器上运行该应用程序,则需要根据不同的环境配置(开发环境或生产环境)修改config.json文件中的“baseURL”选项。具体而言,开发环境下通常设置为“../build”,生产环境下设置为“../bin”。 4. 使用的技术栈: - JavaScript:虽然没有直接提到,但是由于Angular框架主要是用JavaScript来编写的,因此这是必须理解的核心技术之一。 - TypeScript:Angular使用TypeScript作为开发语言,它是JavaScript的一个超集,添加了静态类型检查等功能。 - Node.js和npm:用于运行JavaScript代码以及管理JavaScript项目的依赖。 - Git:版本控制系统,用于代码的版本管理及协作开发。 5. 关于项目结构: - 该应用的项目文件夹结构可能遵循Angular CLI的典型结构,包含了如下目录:app(存放应用组件)、assets(存放静态资源如图片、样式表等)、environments(存放环境配置文件)、server(存放服务器配置文件如上文的config.json)等。 6. 开发和构建流程: - 开发时,可能会使用Angular CLI来快速生成组件、服务等,并利用热重载等特性进行实时开发。 - 构建应用时,通过gulp等构建工具可以进行代码压缩、ES6转译、单元测试等自动化任务,以确保代码的质量和性能优化。 7. 部署: - 项目最终需要部署到服务器上,配置文件中的“baseURL”选项指明了服务器上的资源基础路径。 8. 关于Git仓库: - 压缩包子文件的名称为MarcHayek-CV-master,表明这是一个使用Git版本控制的仓库,且存在一个名为master的分支,这通常是项目的主分支。 以上知识点围绕Angular应用“MarcHayek-CV:我的简历”的创建、配置、开发、构建及部署流程进行了详细说明,涉及了前端开发中常见的工具、技术及工作流。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

深入剖析:内存溢出背后的原因、预防及应急策略(专家版)

![深入剖析:内存溢出背后的原因、预防及应急策略(专家版)](https://d8it4huxumps7.cloudfront.net/uploads/images/65e82a01a4196_dangling_pointer_in_c_2.jpg?d=2000x2000) 参考资源链接:[Net 内存溢出(System.OutOfMemoryException)的常见情况和处理方式总结](https://wenku.csdn.net/doc/6412b784be7fbd1778d4a95f?spm=1055.2635.3001.10343) # 1. 内存溢出的概念及影响 内存溢出,又称
recommend-type

Java中如何对年月日时分秒的日期字符串作如下处理:如何日期分钟介于两个相连的半点之间,就将分钟数调整为前半点

在Java中,你可以使用`java.time`包中的类来处理日期和时间,包括格式化和调整。下面是一个示例,展示了如何根据给定的日期字符串(假设格式为"yyyy-MM-dd HH:mm:ss")进行这样的处理: ```java import java.text.SimpleDateFormat; import java.time.LocalDateTime; import java.time.ZoneId; import java.time.ZonedDateTime; public class Main { public static void main(String[] args
recommend-type

Crossbow Spot最新更新 - 获取Chrome扩展新闻

资源摘要信息:"Crossbow Spot - Latest News Update-crx插件" 该信息是关于一款特定的Google Chrome浏览器扩展程序,名为"Crossbow Spot - Latest News Update"。此插件的目的是帮助用户第一时间获取最新的Crossbow Spot相关信息,它作为一个RSS阅读器,自动聚合并展示Crossbow Spot的最新新闻内容。 从描述中可以提取以下关键知识点: 1. 功能概述: - 扩展程序能让用户领先一步了解Crossbow Spot的最新消息,提供实时更新。 - 它支持自动更新功能,用户不必手动点击即可刷新获取最新资讯。 - 用户界面设计灵活,具有美观的新闻小部件,使得信息的展现既实用又吸引人。 2. 用户体验: - 桌面通知功能,通过Chrome的新通知中心托盘进行实时推送,确保用户不会错过任何重要新闻。 - 提供一个便捷的方式来保持与Crossbow Spot最新动态的同步。 3. 语言支持: - 该插件目前仅支持英语,但开发者已经计划在未来的版本中添加对其他语言的支持。 4. 技术实现: - 此扩展程序是基于RSS Feed实现的,即从Crossbow Spot的RSS源中提取最新新闻。 - 扩展程序利用了Chrome的通知API,以及RSS Feed处理机制来实现新闻的即时推送和展示。 5. 版权与免责声明: - 所有的新闻内容都是通过RSS Feed聚合而来,扩展程序本身不提供原创内容。 - 用户在使用插件时应遵守相关的版权和隐私政策。 6. 安装与使用: - 用户需要从Chrome网上应用店下载.crx格式的插件文件,即Crossbow_Spot_-_Latest_News_Update.crx。 - 安装后,插件会自动运行,并且用户可以对其进行配置以满足个人偏好。 从以上信息可以看出,该扩展程序为那些对Crossbow Spot感兴趣或需要密切跟进其更新的用户提供了一个便捷的解决方案,通过集成RSS源和Chrome通知机制,使得信息获取变得更加高效和及时。这对于需要实时更新信息的用户而言,具有一定的实用价值。同时,插件的未来发展计划中包括了多语言支持,这将使得更多的用户能够使用并从中受益。