用Python写一个线性判别分析
时间: 2023-05-20 08:04:44 浏览: 90
Linear-Discriminant-Analysis-Using-Python:使用Python和使用KNN分类器进行分类来实现线性判别分析
Linear Discriminant Analysis (LDA) 是一种常见的分类算法,它可以用于降维和特征提取。下面是用 Python 实现 LDA 的代码:
```python
import numpy as np
class LDA:
def __init__(self, n_components=None):
self.n_components = n_components
def fit(self, X, y):
n_samples, n_features = X.shape
class_labels = np.unique(y)
# 计算每个类别的均值向量
mean_overall = np.mean(X, axis=0)
S_W = np.zeros((n_features, n_features))
S_B = np.zeros((n_features, n_features))
for c in class_labels:
X_c = X[y == c]
mean_c = np.mean(X_c, axis=0)
S_W += (X_c - mean_c).T.dot(X_c - mean_c)
n_c = X_c.shape[0]
mean_diff = (mean_c - mean_overall).reshape(n_features, 1)
S_B += n_c * mean_diff.dot(mean_diff.T)
# 计算特征值和特征向量
eigenvalues, eigenvectors = np.linalg.eig(np.linalg.inv(S_W).dot(S_B))
eigenvectors = eigenvectors.T
# 排序特征向量
idxs = np.argsort(abs(eigenvalues))[::-1]
eigenvalues = eigenvalues[idxs]
eigenvectors = eigenvectors[idxs]
# 选择前 n_components 个特征向量
if self.n_components is not None:
eigenvectors = eigenvectors[:self.n_components]
self.eigenvalues = eigenvalues
self.eigenvectors = eigenvectors
def transform(self, X):
return np.dot(X, self.eigenvectors.T)
```
这个实现假设每个类别的协方差矩阵相等,这在实际应用中可能不成立。如果你需要更复杂的 LDA 实现,可以参考 scikit-learn 中的实现。
阅读全文