sdr2.rx_rf_bandwidth = 4000000 sdr2.rx_lo = 1998000000 sdr1.tx_lo = 2000000000 sdr1.tx_cyclic_buffer = True sdr1.tx_hardwaregain_chan0 = -30 sdr1.gain_control_mode_chan0 = "slow_attack"各个参数意义的详细介绍,这是ADALM-PLUTO设备的python程序

时间: 2023-10-16 16:09:51 浏览: 164
这些参数是ADALM-PLUTO无线电设备的Python程序中的设置,具体含义如下: - `sdr2.rx_rf_bandwidth = 4000000`: 接收端带宽为4MHz,即接收信号时所能接受的最大频率范围。 - `sdr2.rx_lo = 1998000000`: 接收端本振频率为1.998GHz,即接收时所需要的本振频率。 - `sdr1.tx_lo = 2000000000`: 发送端本振频率为2.0GHz,即发送时所需要的本振频率。 - `sdr1.tx_cyclic_buffer = True`: 发送数据时采用循环缓冲区方式,即发送数据的缓冲区会不断循环使用。 - `sdr1.tx_hardwaregain_chan0 = -30`: 发送端通道0硬件增益为-30dB,即发送时所需要的硬件增益。 - `sdr1.gain_control_mode_chan0 = "slow_attack"`: 发送端通道0增益控制模式为慢攻击,即增益变化较慢,适用于信号变化较缓慢的情况。 这些参数的设置可以根据具体的应用场景进行调整,以达到最佳的性能和效果。
相关问题

详细解释以下Python代码:import numpy as np import adi import matplotlib.pyplot as plt sample_rate = 1e6 # Hz center_freq = 915e6 # Hz num_samps = 100000 # number of samples per call to rx() sdr = adi.Pluto("ip:192.168.2.1") sdr.sample_rate = int(sample_rate) # Config Tx sdr.tx_rf_bandwidth = int(sample_rate) # filter cutoff, just set it to the same as sample rate sdr.tx_lo = int(center_freq) sdr.tx_hardwaregain_chan0 = -50 # Increase to increase tx power, valid range is -90 to 0 dB # Config Rx sdr.rx_lo = int(center_freq) sdr.rx_rf_bandwidth = int(sample_rate) sdr.rx_buffer_size = num_samps sdr.gain_control_mode_chan0 = 'manual' sdr.rx_hardwaregain_chan0 = 0.0 # dB, increase to increase the receive gain, but be careful not to saturate the ADC # Create transmit waveform (QPSK, 16 samples per symbol) num_symbols = 1000 x_int = np.random.randint(0, 4, num_symbols) # 0 to 3 x_degrees = x_int*360/4.0 + 45 # 45, 135, 225, 315 degrees x_radians = x_degrees*np.pi/180.0 # sin() and cos() takes in radians x_symbols = np.cos(x_radians) + 1j*np.sin(x_radians) # this produces our QPSK complex symbols samples = np.repeat(x_symbols, 16) # 16 samples per symbol (rectangular pulses) samples *= 2**14 # The PlutoSDR expects samples to be between -2^14 and +2^14, not -1 and +1 like some SDRs # Start the transmitter sdr.tx_cyclic_buffer = True # Enable cyclic buffers sdr.tx(samples) # start transmitting # Clear buffer just to be safe for i in range (0, 10): raw_data = sdr.rx() # Receive samples rx_samples = sdr.rx() print(rx_samples) # Stop transmitting sdr.tx_destroy_buffer() # Calculate power spectral density (frequency domain version of signal) psd = np.abs(np.fft.fftshift(np.fft.fft(rx_samples)))**2 psd_dB = 10*np.log10(psd) f = np.linspace(sample_rate/-2, sample_rate/2, len(psd)) # Plot time domain plt.figure(0) plt.plot(np.real(rx_samples[::100])) plt.plot(np.imag(rx_samples[::100])) plt.xlabel("Time") # Plot freq domain plt.figure(1) plt.plot(f/1e6, psd_dB) plt.xlabel("Frequency [MHz]") plt.ylabel("PSD") plt.show(),并分析该代码中QPSK信号的功率谱密度图的特点

这段Python代码的作用是使用ADI Pluto SDR设备生成并传输一个QPSK信号,并将接收到的信号进行功率谱密度分析。下面是对代码的注释: ``` import numpy as np import adi import matplotlib.pyplot as plt # 设置采样率、中心频率和采样点数 sample_rate = 1e6 # Hz center_freq = 915e6 # Hz num_samps = 100000 # number of samples per call to rx() # 连接ADI Pluto SDR设备 sdr = adi.Pluto("ip:192.168.2.1") sdr.sample_rate = int(sample_rate) # 配置发送端的参数 sdr.tx_rf_bandwidth = int(sample_rate) # filter cutoff, just set it to the same as sample rate sdr.tx_lo = int(center_freq) sdr.tx_hardwaregain_chan0 = -50 # Increase to increase tx power, valid range is -90 to 0 dB # 配置接收端的参数 sdr.rx_lo = int(center_freq) sdr.rx_rf_bandwidth = int(sample_rate) sdr.rx_buffer_size = num_samps sdr.gain_control_mode_chan0 = 'manual' sdr.rx_hardwaregain_chan0 = 0.0 # dB, increase to increase the receive gain, but be careful not to saturate the ADC # 创建发送的QPSK信号 num_symbols = 1000 x_int = np.random.randint(0, 4, num_symbols) # 0 to 3 x_degrees = x_int*360/4.0 + 45 # 45, 135, 225, 315 degrees x_radians = x_degrees*np.pi/180.0 # sin() and cos() takes in radians x_symbols = np.cos(x_radians) + 1j*np.sin(x_radians) # this produces our QPSK complex symbols samples = np.repeat(x_symbols, 16) # 16 samples per symbol (rectangular pulses) samples *= 2**14 # The PlutoSDR expects samples to be between -2^14 and +2^14, not -1 and +1 like some SDRs # 启动发送端并发送信号 sdr.tx_cyclic_buffer = True # Enable cyclic buffers sdr.tx(samples) # start transmitting # 接收接收端的信号 for i in range (0, 10): raw_data = sdr.rx() # Receive samples rx_samples = sdr.rx() print(rx_samples) # 停止发送端 sdr.tx_destroy_buffer() # 计算接收到的信号的功率谱密度 psd = np.abs(np.fft.fftshift(np.fft.fft(rx_samples)))**2 psd_dB = 10*np.log10(psd) f = np.linspace(sample_rate/-2, sample_rate/2, len(psd)) # 绘制时域图 plt.figure(0) plt.plot(np.real(rx_samples[::100])) plt.plot(np.imag(rx_samples[::100])) plt.xlabel("Time") # 绘制频域图 plt.figure(1) plt.plot(f/1e6, psd_dB) plt.xlabel("Frequency [MHz]") plt.ylabel("PSD") plt.show() ``` 以上代码生成了一个随机QPSK信号,通过ADI Pluto SDR设备将其传输,并使用Pluto SDR设备接收该信号。接收到的信号进行了功率谱密度分析,并绘制了频域图。 QPSK信号的功率谱密度图的特点是,其频谱表现为四个簇,每个簇对应QPSK信号的一个符号。每个簇的带宽约为基带信号的带宽,且由于使用矩形脉冲,每个簇的带宽之间有一定的重叠。此外,功率谱密度图中还可以看到一些其他频率分量,这些分量可能是由于接收信号中存在其他干扰或噪声导致的。

在下面代码中加入接收端的收到的复信号的时域图,再加一个隔直流的代码,用python import time import adi import matplotlib.pyplot as plt import numpy as np from scipy import signal # Create radio sdr = adi.Pluto() # Configure properties sdr.rx_rf_bandwidth = 4000000 sdr.rx_lo = 1900000000 sdr.tx_lo = 2000000000 sdr.tx_cyclic_buffer = True sdr.tx_hardwaregain_chan0 = -30 sdr.gain_control_mode_chan0 = "slow_attack" # Read properties print("RX LO %s" % (sdr.rx_lo)) print(sdr.sample_rate) # Create a sinewave waveform fs = int(sdr.sample_rate) N = 1024 fc = int(3000000 / (fs / N)) * (fs / N) ts = 1 / float(fs) t = np.arange(0, N * ts, ts) i = np.cos(2 * np.pi * t * fc) * 2 ** 14 q = np.sin(2 * np.pi * t * fc) * 2 ** 14 i=i+2**15 q=q+2**15 iq = i + 1j * q # Send data sdr.tx(iq) # Collect data for r in range(20): x = sdr.rx() print(x) y=abs(x) print(y) print('------------------------') plt.figure(0) plt.plot(y) f, Pxx_den = signal.periodogram(x, fs) #plt.clf() # plt.figure(1) plt.semilogy(f, Pxx_den) plt.ylim([1e-7, 1e4]) plt.xlabel("frequency [Hz]") plt.ylabel("PSD [V**2/Hz]") plt.draw() plt.pause(0.05) time.sleep(0.1) plt.show()

以下是加入接收端的收到的复信号的时域图和隔直流的代码的修改后的完整代码: ```python import time import adi import matplotlib.pyplot as plt import numpy as np from scipy import signal # Create radio sdr = adi.Pluto() # Configure properties sdr.rx_rf_bandwidth = 4000000 sdr.rx_lo = 1900000000 sdr.tx_lo = 2000000000 sdr.tx_cyclic_buffer = True sdr.tx_hardwaregain_chan0 = -30 sdr.gain_control_mode_chan0 = "slow_attack" # Read properties print("RX LO %s" % (sdr.rx_lo)) print(sdr.sample_rate) # Create a sinewave waveform fs = int(sdr.sample_rate) N = 1024 fc = int(3000000 / (fs / N)) * (fs / N) ts = 1 / float(fs) t = np.arange(0, N * ts, ts) i = np.cos(2 * np.pi * t * fc) * 2 ** 14 q = np.sin(2 * np.pi * t * fc) * 2 ** 14 i = i + 2 ** 15 q = q + 2 ** 15 iq = i + 1j * q # Send data sdr.tx(iq) # Collect data for r in range(20): x = sdr.rx() print(x) y = abs(x) y_dc = y - np.mean(y) # remove DC component print(y_dc) print('------------------------') plt.figure(0) plt.subplot(211) plt.plot(y_dc) plt.xlabel("Time [samples]") plt.ylabel("Amplitude") plt.subplot(212) f, Pxx_den = signal.periodogram(x, fs) plt.semilogy(f, Pxx_den) plt.ylim([1e-7, 1e4]) plt.xlabel("Frequency [Hz]") plt.ylabel("PSD [V**2/Hz]") plt.draw() plt.pause(0.05) time.sleep(0.1) plt.show() ``` 在这个代码中,我们加入了一个隔直流的代码,用于移除接收到的信号的DC分量。这个代码为: ```python y_dc = y - np.mean(y) # remove DC component ``` 我们在时域图上画出了处理后的信号,并在频域图上画出了信号的功率谱密度(PSD)。 注意:这个代码只能在连接了PlutoSDR设备并安装了必要的包后才能运行。
阅读全文

相关推荐

最新推荐

recommend-type

springboot应急救援物资管理系统.zip

springboot应急救援物资管理系统
recommend-type

遥感图像处理-YOLOv11改进版在卫星船舶识别中的应用.pdf

想深入掌握目标检测前沿技术?Yolov11绝对不容错过!作为目标检测领域的新星,Yolov11融合了先进算法与创新架构,具备更快的检测速度、更高的检测精度。它不仅能精准识别各类目标,还在复杂场景下展现出卓越性能。无论是学术研究,还是工业应用,Yolov11都能提供强大助力。阅读我们的技术文章,带你全方位剖析Yolov11,解锁更多技术奥秘!
recommend-type

智慧社区物联网解决方案PPT(31页).pptx

在当今社会,智慧社区的建设已成为提升居民生活质量、增强社区管理效率的重要途径。智慧社区,作为居住在一定地域范围内人们社会生活的共同体,不再仅仅是房屋和人口的简单集合,而是融合了先进信息技术、物联网、大数据等现代化手段的新型社区形态。它致力于满足居民的多元化需求,从安全、健康、社交到尊重与自我实现,全方位打造温馨、便捷、高效的社区生活环境。 智慧社区的建设规划围绕居民的核心需求展开。在安全方面,智慧社区通过集成化安防系统,如门禁管理、访客登记、消防监控等,实现了对社区内外的全面监控与高效管理。这些系统不仅能够自动识别访客身份,有效防止非法入侵,还能实时监测消防设备状态,确保火灾等紧急情况下的迅速响应。同时,智慧医疗系统的引入,为居民提供了便捷的健康管理服务。无论是居家的老人还是忙碌的上班族,都能通过无线健康检测设备随时监测自身健康状况,并将数据传输至健康管理平台,享受长期的健康咨询与评估服务。此外,智慧物业系统涵盖了空调运行管控、照明管控、车辆管理等多个方面,通过智能化手段降低了运维成本,提高了资源利用效率,为居民创造了更加舒适、节能的生活环境。 智慧社区的应用场景丰富多彩,既体现了科技的力量,又充满了人文关怀。在平安社区方面,消防栓开盖报警、防火安全门开启监控等技术的应用,为社区的安全防范筑起了坚实的防线。而电梯运行监控系统的加入,更是让居民在享受便捷出行的同时,多了一份安心与保障。在便民社区中,智慧服务超市、智能终端业务的推广,让居民足不出户就能享受到全面的生活服务帮助。无论是社保业务查询、自助缴费还是行政审批等事项,都能通过智能终端轻松办理,极大地节省了时间和精力。此外,智慧社区还特别关注老年人的生活需求,提供了居家养老服务、远程健康监测等贴心服务,让老年人在享受科技便利的同时,也能感受到社区的温暖与关怀。这些应用场景的落地实施,不仅提升了居民的生活品质,也增强了社区的凝聚力和向心力,让智慧社区成为了人们心中理想的居住之地。
recommend-type

2.4G输出小数分数锁相环与频率综合器进阶项目-涵盖Cadence全套工具与gpdk45nm工艺,丰富仿真测试与完整版图资源,适合锁相环新手进阶学习 ,基于Cadence的2.4G小数分数锁相环进阶

2.4G输出小数分数锁相环与频率综合器进阶项目——涵盖Cadence全套工具与gpdk45nm工艺,丰富仿真测试与完整版图资源,适合锁相环新手进阶学习。,基于Cadence的2.4G小数分数锁相环进阶项目:涵盖LC VCO、仿真报告及版图设计资源,适合锁相环初学者深入进阶学习,2.4G输出小数分数锁相环,频率综合器,锁相环进阶项目,Cadence家的,有完整的设计仿真报告ppt等文档?配套视频讲解?完整的版图 工艺是gpdk45nm,输入参考频率20MHz,电荷泵电流50.2uA,VCO输出4.8GHz,Kvco=90MHz V,锁相环输出2.4GHz,分频比240,路带宽133K,相位裕度62°。 适合新手,或者想要深入学习锁相环的同学,一共有七八十个仿真sim testbench,都有配套的说明仿真文档介绍,可以直接仿真查看效果 里面很多模块都是非常经典的,有bg,LDO,宽范围的LC VCO(32个band),IQ分频,SDM小数调制,有源滤波器,Verilog-A相位噪声建模,VCO校准,环路滤波器校准,温度计数码开关,AMS数模混合仿真等等 有完整的版图,top,cell的
recommend-type

(GUI界面形式)MATLAB教室人数统计.zip

(GUI界面形式)MATLAB教室人数统计.zip
recommend-type

Spring Websocket快速实现与SSMTest实战应用

标题“websocket包”指代的是一个在计算机网络技术中应用广泛的组件或技术包。WebSocket是一种网络通信协议,它提供了浏览器与服务器之间进行全双工通信的能力。具体而言,WebSocket允许服务器主动向客户端推送信息,是实现即时通讯功能的绝佳选择。 描述中提到的“springwebsocket实现代码”,表明该包中的核心内容是基于Spring框架对WebSocket协议的实现。Spring是Java平台上一个非常流行的开源应用框架,提供了全面的编程和配置模型。在Spring中实现WebSocket功能,开发者通常会使用Spring提供的注解和配置类,简化WebSocket服务端的编程工作。使用Spring的WebSocket实现意味着开发者可以利用Spring提供的依赖注入、声明式事务管理、安全性控制等高级功能。此外,Spring WebSocket还支持与Spring MVC的集成,使得在Web应用中使用WebSocket变得更加灵活和方便。 直接在Eclipse上面引用,说明这个websocket包是易于集成的库或模块。Eclipse是一个流行的集成开发环境(IDE),支持Java、C++、PHP等多种编程语言和多种框架的开发。在Eclipse中引用一个库或模块通常意味着需要将相关的jar包、源代码或者配置文件添加到项目中,然后就可以在Eclipse项目中使用该技术了。具体操作可能包括在项目中添加依赖、配置web.xml文件、使用注解标注等方式。 标签为“websocket”,这表明这个文件或项目与WebSocket技术直接相关。标签是用于分类和快速检索的关键字,在给定的文件信息中,“websocket”是核心关键词,它表明该项目或文件的主要功能是与WebSocket通信协议相关的。 文件名称列表中的“SSMTest-master”暗示着这是一个版本控制仓库的名称,例如在GitHub等代码托管平台上。SSM是Spring、SpringMVC和MyBatis三个框架的缩写,它们通常一起使用以构建企业级的Java Web应用。这三个框架分别负责不同的功能:Spring提供核心功能;SpringMVC是一个基于Java的实现了MVC设计模式的请求驱动类型的轻量级Web框架;MyBatis是一个支持定制化SQL、存储过程以及高级映射的持久层框架。Master在这里表示这是项目的主分支。这表明websocket包可能是一个SSM项目中的模块,用于提供WebSocket通讯支持,允许开发者在一个集成了SSM框架的Java Web应用中使用WebSocket技术。 综上所述,这个websocket包可以提供给开发者一种简洁有效的方式,在遵循Spring框架原则的同时,实现WebSocket通信功能。开发者可以利用此包在Eclipse等IDE中快速开发出支持实时通信的Web应用,极大地提升开发效率和应用性能。
recommend-type

电力电子技术的智能化:数据中心的智能电源管理

# 摘要 本文探讨了智能电源管理在数据中心的重要性,从电力电子技术基础到智能化电源管理系统的实施,再到技术的实践案例分析和未来展望。首先,文章介绍了电力电子技术及数据中心供电架构,并分析了其在能效提升中的应用。随后,深入讨论了智能化电源管理系统的组成、功能、监控技术以及能
recommend-type

通过spark sql读取关系型数据库mysql中的数据

Spark SQL是Apache Spark的一个模块,它允许用户在Scala、Python或SQL上下文中查询结构化数据。如果你想从MySQL关系型数据库中读取数据并处理,你可以按照以下步骤操作: 1. 首先,你需要安装`PyMySQL`库(如果使用的是Python),它是Python与MySQL交互的一个Python驱动程序。在命令行输入 `pip install PyMySQL` 来安装。 2. 在Spark环境中,导入`pyspark.sql`库,并创建一个`SparkSession`,这是Spark SQL的入口点。 ```python from pyspark.sql imp
recommend-type

新版微软inspect工具下载:32位与64位版本

根据给定文件信息,我们可以生成以下知识点: 首先,从标题和描述中,我们可以了解到新版微软inspect.exe与inspect32.exe是两个工具,它们分别对应32位和64位的系统架构。这些工具是微软官方提供的,可以用来下载获取。它们源自Windows 8的开发者工具箱,这是一个集合了多种工具以帮助开发者进行应用程序开发与调试的资源包。由于这两个工具被归类到开发者工具箱,我们可以推断,inspect.exe与inspect32.exe是用于应用程序性能检测、问题诊断和用户界面分析的工具。它们对于开发者而言非常实用,可以在开发和测试阶段对程序进行深入的分析。 接下来,从标签“inspect inspect32 spy++”中,我们可以得知inspect.exe与inspect32.exe很有可能是微软Spy++工具的更新版或者是有类似功能的工具。Spy++是Visual Studio集成开发环境(IDE)的一个组件,专门用于Windows应用程序。它允许开发者观察并调试与Windows图形用户界面(GUI)相关的各种细节,包括窗口、控件以及它们之间的消息传递。使用Spy++,开发者可以查看窗口的句柄和类信息、消息流以及子窗口结构。新版inspect工具可能继承了Spy++的所有功能,并可能增加了新功能或改进,以适应新的开发需求和技术。 最后,由于文件名称列表仅提供了“ed5fa992d2624d94ac0eb42ee46db327”,没有提供具体的文件名或扩展名,我们无法从这个文件名直接推断出具体的文件内容或功能。这串看似随机的字符可能代表了文件的哈希值或是文件存储路径的一部分,但这需要更多的上下文信息来确定。 综上所述,新版的inspect.exe与inspect32.exe是微软提供的开发者工具,与Spy++有类似功能,可以用于程序界面分析、问题诊断等。它们是专门为32位和64位系统架构设计的,方便开发者在开发过程中对应用程序进行深入的调试和优化。同时,使用这些工具可以提高开发效率,确保软件质量。由于这些工具来自Windows 8的开发者工具箱,它们可能在兼容性、效率和用户体验上都经过了优化,能够为Windows应用的开发和调试提供更加专业和便捷的解决方案。
recommend-type

如何运用电力电子技术实现IT设备的能耗监控

# 摘要 随着信息技术的快速发展,IT设备能耗监控已成为提升能效和减少环境影响的关键环节。本文首先概述了电力电子技术与IT设备能耗监控的重要性,随后深入探讨了电力电子技术的基础原理及其在能耗监控中的应用。文章详细分析了IT设备能耗监控的理论框架、实践操作以及创新技术的应用,并通过节能改造案例展示了监控系统构建和实施的成效。最后,本文展望了未来能耗监控技术的发展趋势,同时