c语言中133%10=?

时间: 2023-06-03 21:02:56 浏览: 67
我不确定您的问题是什么,因为您使用了无法识别的非标准字符。如果您使用标准 ASCII 字符,那么133可能代表字符码表中的某个字符,或者是数字133本身。但是,由于您的问题属于技术问题,我可以回答:133在 C 语言中可以代表一个整数值。
相关问题

写一个C语言额AES加密函数

好的,我可以帮您写一个C语言的AES加密函数,以下是代码: ``` #include <stdio.h> #include <string.h> #include <stdint.h> #define AES_BLOCK_SIZE 16 typedef struct { uint32_t rk[60]; int nr; } aes_key_t; static const uint8_t sbox[256] = { 99, 124, 119, 123, 242, 107, 111, 197, 48, 1, 103, 43, 254, 215, 171, 118, 202, 130, 201, 125, 250, 89, 71, 240, 173, 212, 162, 175, 156, 164, 114, 192, 183, 253, 147, 38, 54, 63, 247, 204, 52, 165, 229, 241, 113, 216, 49, 21, 4, 199, 35, 195, 24, 150, 5, 154, 7, 18, 128, 226, 235, 39, 178, 117, 9, 131, 44, 26, 27, 110, 90, 160, 82, 59, 214, 179, 41, 227, 47, 132, 83, 209, 0, 237, 32, 252, 177, 91, 106, 203, 190, 57, 74, 76, 88, 207, 208, 239, 170, 251, 67, 77, 51, 133, 69, 249, 2, 127, 80, 60, 159, 168, 81, 163, 64, 143, 146, 157, 56, 245, 188, 182, 218, 33, 16, 255, 243, 210, 205, 12, 19, 236, 95, 151, 68, 23, 196, 167, 126, 61, 100, 93, 25, 115, 96, 129, 79, 220, 34, 42, 144, 136, 70, 238, 184, 20, 222, 94, 11, 219, 224, 50, 58, 10, 73, 6, 36, 92, 194, 211, 172, 98, 145, 149, 228, 121, 231, 200, 55, 109, 141, 213, 78, 169, 108, 86, 244, 234, 101, 122, 174, 8, 186, 120, 37, 46, 28, 166, 180, 198, 232, 221, 116, 31, 75, 189, 139, 138, 112, 62, 181, 102, 72, 3, 246, 14, 97, 53, 87, 185, 134, 193, 29, 158, 225, 248, 152, 17, 105, 217, 142, 148, 155, 30, 135, 233, 206, 85, 40, 223, 140, 161, 137, 13, 191, 230, 66, 104, 65, 153, 45, 15, 176, 84, 187, 22, }; static const uint8_t rcon[11] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1B, 0x36, 0x6C }; static void aes_sub_bytes(uint8_t* state) { uint32_t i; for (i = 0; i < AES_BLOCK_SIZE; ++i) { state[i] = sbox[state[i]]; } } static void aes_shift_rows(uint8_t* state) { uint32_t tmp; // Row 0 does not change // Shift row 1 tmp = state[1]; state[1] = state[5]; state[5] = state[9]; state[9] = state[13]; state[13] = tmp; // Shift row 2 tmp = state[2]; state[2] = state[10]; state[10] = tmp; tmp = state[6]; state[6] = state[14]; state[14] = tmp; // Shift row 3 tmp = state[15]; state[15] = state[11]; state[11] = state[7]; state[7] = state[3]; state[3] = tmp; } static uint8_t gfmul(uint8_t a, uint8_t b) { uint32_t sum = 0; while (b) { if (b & 1) { sum ^= a; } a <<= 1; b >>= 1; if (a & 0x100) { a ^= 0x11B; } } return (uint8_t)sum; } static void mix_column(uint8_t* col) { uint8_t tmp[4]; uint32_t i; for (i = 0; i < 4; ++i) { tmp[i] = col[i]; } col[0] = gfmul(tmp[0], 2) ^ gfmul(tmp[3], 1) ^ gfmul(tmp[2], 1) ^ gfmul(tmp[1], 3); col[1] = gfmul(tmp[1], 2) ^ gfmul(tmp[0], 1) ^ gfmul(tmp[3], 1) ^ gfmul(tmp[2], 3); col[2] = gfmul(tmp[2], 2) ^ gfmul(tmp[1], 1) ^ gfmul(tmp[0], 1) ^ gfmul(tmp[3], 3); col[3] = gfmul(tmp[3], 2) ^ gfmul(tmp[2], 1) ^ gfmul(tmp[1], 1) ^ gfmul(tmp[0], 3); } static void aes_mix_columns(uint8_t* state) { uint32_t i; for (i = 0; i < 4; ++i) { mix_column(&state[i * 4]); } } static void aes_add_round_key(uint8_t* state, const uint32_t* key) { uint32_t i, j; for (i = 0; i < 4; ++i) { j = i * 4; state[j] ^= (uint8_t)(key[i] >> 24); state[j + 1] ^= (uint8_t)(key[i] >> 16); state[j + 2] ^= (uint8_t)(key[i] >> 8); state[j + 3] ^= (uint8_t)key[i]; } } static void aes_generate_key(const uint8_t* key, aes_key_t* aes_key) { uint32_t i, j, k; uint32_t temp; uint32_t* rk; const uint32_t* rc; const uint32_t* rcp; rk = aes_key->rk; aes_key->nr = 10; for (i = 0; i < 4; ++i) { rk[i] = (uint32_t)((key[4 * i] << 24) | (key[4 * i + 1] << 16) | (key[4 * i + 2] << 8) | key[4 * i + 3]); } rc = rcon; rcp = rc++; // Generate the next 44 round keys for (i = 4; i < 44; ++i) { temp = rk[i - 1]; if (i % 4 == 0) { temp = ((uint32_t)sbox[temp & 0xFF]) | ((uint32_t)sbox[(temp >> 8) & 0xFF] << 8) | ((uint32_t)sbox[(temp >> 16) & 0xFF] << 16) | ((uint32_t)sbox[(temp >> 24) & 0xFF] << 24); temp ^= (*rcp << 24); rcp = (++rcp == rcon + 10) ? rcon : rcp; } if (i % 4 == 1) { temp = ((uint32_t)sbox[temp & 0xFF] << 8) | ((uint32_t)sbox[(temp >> 8) & 0xFF] << 16) | ((uint32_t)sbox[(temp >> 16) & 0xFF] << 24) | ((uint32_t)sbox[(temp >> 24) & 0xFF]); } rk[i] = rk[i - 4] ^ temp; } } static void aes_encrypt(const uint8_t* in, uint8_t* out, const aes_key_t* aes_key) { uint32_t i, j; uint8_t state[AES_BLOCK_SIZE]; const uint32_t* rk; memcpy(state, in, AES_BLOCK_SIZE); rk = aes_key->rk; aes_add_round_key(state, rk); for (i = 1; i < aes_key->nr; ++i) { aes_sub_bytes(state); aes_shift_rows(state); aes_mix_columns(state); rk += 4; aes_add_round_key(state, rk); } aes_sub_bytes(state); aes_shift_rows(state); rk += 4; aes_add_round_key(state, rk); memcpy(out, state, AES_BLOCK_SIZE); } void aes_cbc_encrypt(const uint8_t* iv, const uint8_t* in, uint8_t* out, uint32_t len, const uint8_t* key) { aes_key_t aes_key; uint8_t buf[AES_BLOCK_SIZE], prev[AES_BLOCK_SIZE]; uint32_t i, j; const uint8_t* p; aes_generate_key(key, &aes_key); // Encrypt the first block with the IV for (i = 0; i < AES_BLOCK_SIZE; ++i) { buf[i] = prev[i] = in[i] ^ iv[i]; } aes_encrypt(buf, buf, &aes_key); for (i = 0; i < AES_BLOCK_SIZE; ++i) { out[i] = buf[i]; } // Encrypt the remaining blocks with CBC for (p = in + AES_BLOCK_SIZE, i = AES_BLOCK_SIZE; i < len; p += AES_BLOCK_SIZE, i += AES_BLOCK_SIZE) { for (j = 0; j < AES_BLOCK_SIZE; ++j) { buf[j] = p[j] ^ prev[j]; } aes_encrypt(buf, buf, &aes_key); for (j = 0; j < AES_BLOCK_SIZE; ++j) { prev[j] = buf[j]; out[i + j] = buf[j]; } } } int main() { uint8_t key[AES_BLOCK_SIZE] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f}; uint8_t in[AES_BLOCK_SIZE] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff}; uint8_t iv[AES_BLOCK_SIZE] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff}; uint8_t out[AES_BLOCK_SIZE]; aes_cbc_encrypt(iv, in, out, AES_BLOCK_SIZE, key); for (int i = 0; i < AES_BLOCK_SIZE; i++) { printf("%02x ", out[i]); } return 0; } ```

3DES加密算法源码 c语言

以下是3DES加密算法的C语言源码实现: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> #define ENCRYPT 1 #define DECRYPT 0 typedef unsigned char BYTE; typedef unsigned long DWORD; /* 定义DES算法中使用的数据类型 */ typedef struct { BYTE key[8]; BYTE encrypt; BYTE iv[8]; } des_context; /* 定义3DES算法中使用的数据类型 */ typedef struct { des_context des1; des_context des2; des_context des3; } des3_context; /* 定义DES算法中使用的常量 */ static const BYTE odd_parity_table[256] = { 1, 2, 4, 7, 8, 11, 13, 14, 16, 19, 21, 22, 25, 26, 28, 31, 32, 35, 37, 38, 41, 42, 44, 47, 49, 50, 52, 55, 56, 59, 61, 62, 64, 67, 69, 70, 73, 74, 76, 79, 81, 82, 84, 87, 88, 91, 93, 94, 97, 98, 100, 103, 104, 107, 109, 110, 112, 115, 117, 118, 121, 122, 124, 127, 128, 131, 133, 134, 137, 138, 140, 143, 145, 146, 148, 151, 152, 155, 157, 158, 161, 162, 164, 167, 168, 171, 173, 174, 176, 179, 181, 182, 185, 186, 188, 191, 193, 194, 196, 199, 200, 203, 205, 206, 208, 211, 213, 214, 217, 218, 220, 223, 224, 227, 229, 230, 233, 234, 236, 239, 241, 242, 244, 247, 248, 251, 253, 254, 1, 2, 4, 7, 8, 11, 13, 14, 16, 19, 21, 22, 25, 26, 28, 31, 32, 35, 37, 38, 41, 42, 44, 47, 49, 50, 52, 55, 56, 59, 61, 62, 64, 67, 69, 70, 73, 74, 76, 79, 81, 82, 84, 87, 88, 91, 93, 94, 97, 98, 100, 103, 104, 107, 109, 110, 112, 115, 117, 118, 121, 122, 124, 127, 128, 131, 133, 134, 137, 138, 140, 143, 145, 146, 148, 151, 152, 155, 157, 158, 161, 162, 164, 167, 168, 171, 173, 174, 176, 179, 181, 182, 185, 186, 188, 191, 193, 194, 196, 199, 200, 203, 205, 206, 208, 211, 213, 214, 217, 218, 220, 223, 224, 227, 229, 230, 233, 234, 236, 239, 241, 242, 244, 247, 248, 251, 253, 254 }; static const BYTE bytebit[8] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 }; static const DWORD bigbyte[24] = { 0x800000L, 0x400000L, 0x200000L, 0x100000L, 0x080000L, 0x040000L, 0x020000L, 0x010000L, 0x008000L, 0x004000L, 0x002000L, 0x001000L, 0x000800L, 0x000400L, 0x000200L, 0x000100L, 0x000080L, 0x000040L, 0x000020L, 0x000010L, 0x000008L, 0x000004L, 0x000002L, 0x000001L }; static const BYTE pc1[56] = { 56, 48, 40, 32, 24, 16, 8, 0, 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18, 10, 2, 59, 51, 43, 35, 62, 54, 46, 38, 30, 22, 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 60, 52, 44, 36, 28, 20, 12, 4, 27, 19, 11, 3 }; static const BYTE totrot[16] = { 1, 2, 4, 6, 8, 10, 12, 14, 15, 17, 19, 21, 23, 25, 27, 28 }; static const BYTE pc2[48] = { 13, 16, 10, 23, 0, 4, 2, 27, 14, 5, 20, 9, 22, 18, 11, 3, 25, 7, 15, 6, 26, 19, 12, 1, 40, 51, 30, 36, 46, 54, 29, 39, 50, 44, 32, 47, 43, 48, 38, 55, 33, 52, 45, 41, 49, 35, 28, 31 }; static const DWORD SP1[64] = { 0x01010400L, 0x00000000L, 0x00010000L, 0x01010404L, 0x01010004L, 0x00010404L, 0x00000004L, 0x00010000L, 0x00000400L, 0x01010400L, 0x01010404L, 0x00000400L, 0x01000404L, 0x01010004L, 0x01000000L, 0x00000004L, 0x00000404L, 0x01000400L, 0x01000400L, 0x00010400L, 0x00010400L, 0x01010000L, 0x01010000L, 0x01000404L, 0x00010004L, 0x01000004L, 0x01000004L, 0x00010004L, 0x00000000L, 0x00000404L, 0x00010404L, 0x01000000L, 0x00010000L, 0x01010404L, 0x00000004L, 0x01010000L, 0x01010400L, 0x01000000L, 0x01000000L, 0x00000400L, 0x01010004L, 0x00010000L, 0x00010400L, 0x01000004L, 0x00000400L, 0x00000004L, 0x01000404L, 0x00010404L, 0x01010404L, 0x00010004L, 0x01010000L, 0x01000404L, 0x01000004L, 0x00000404L, 0x00010404L, 0x01010400L, 0x00000404L, 0x01000400L, 0x01000400L, 0x00000000L, 0x00010004L, 0x00010400L, 0x00000000L, 0x01010004L }; static const DWORD SP2[64] = { 0x80108020L, 0x80008000L, 0x00008000L, 0x00108020L, 0x00100000L, 0x00000020L, 0x80100020L, 0x80008020L, 0x80000020L, 0x80108020L, 0x80108000L, 0x80000000L, 0x80008000L, 0x00100000L, 0x00000020L, 0x80100020L, 0x00108000L, 0x00100020L, 0x80008020L, 0x00000000L, 0x80000000L, 0x00008000L, 0x00108020L, 0x80100000L, 0x00100020L, 0x80000020L, 0x00000000L, 0x00108000L, 0x00008020L, 0x80108000L, 0x80100000L, 0x00008020L, 0x00000000L, 0x00108020L, 0x80100020L, 0x00100000L, 0x80008020L, 0x80100000L, 0x80108000L, 0x00008000L, 0x80100000L, 0x80008000L, 0x00000020L, 0x80108020L, 0x00108020L, 0x00000020L, 0x00008000L, 0x80000000L, 0x00008020L, 0x80108000L, 0x00100000L, 0x80000020L, 0x00100020L, 0x80008020L, 0x80000020L, 0x00100020L, 0x00108000L, 0x00000000L, 0x80008000L, 0x00008020L, 0x80000000L, 0x80100020L, 0x80108020L, 0x00108000L }; static const DWORD SP3[64] = { 0x00000208L, 0x08020200L, 0x00000000L, 0x08020008L, 0x08000200L, 0x00000000L, 0x00020208L, 0x08000200L, 0x00020008L, 0x08000008L, 0x08000008L, 0x00020000L, 0x08020208L, 0x00020008L, 0x08020000L, 0x00000208L, 0x08000000L, 0x00000008L, 0x08020200L, 0x00000200L, 0x00020200L, 0x08020000L, 0x08020008L, 0x00020208L, 0x08000208L, 0x00020200L, 0x00020000L, 0x08000208L, 0x00000008L, 0x08020208L, 0x00000200L, 0x08000000L, 0x08020200L, 0x08000000L, 0x00020008L, 0x00000208L, 0x00020000L, 0x08020200L, 0x08000200L, 0x00000000L, 0x00000200L, 0x00020008L, 0x08020208L, 0x08000200L, 0x08000008L, 0x00000200L, 0x00000000L, 0x08020008L, 0x08000208L, 0x00020000L, 0x08000000L, 0x08020208L, 0x00000008L

相关推荐

最新推荐

recommend-type

Java面试整理,涵盖基础、JVM、线程并发、框架、MySQL、微服务、Redis、中间件、数据结构与算法等。陆续完善中.zip

Java面试整理,涵盖基础、JVM、线程并发、框架、MySQL、微服务、Redis、中间件、数据结构与算法等。陆续完善中
recommend-type

chromedriver-mac-x64_121.0.6167.184.zip

chromedriver-mac-x64_121.0.6167.184.zip
recommend-type

【Java面试+Java技术文章汇总】 涵盖大部分Java程序员所需要掌握的核心知识。.zip

【Java面试+Java技术文章汇总】 涵盖大部分Java程序员所需要掌握的核心知识。
recommend-type

资源管理的艺术:使用MySQL用户资源配额优化性能

MySQL是一个流行的开源关系型数据库管理系统(RDBMS),广泛用于Web应用程序的后端数据存储。它基于结构化查询语言(SQL)来管理数据,并且是LAMP(Linux, Apache, MySQL, PHP/Python/Perl)技术栈的一部分,这个技术栈常用于构建动态网站和Web应用程序。 MySQL的特点包括: - **开放源代码**:MySQL的源代码是公开的,任何人都可以自由使用和修改。 - **跨平台**:MySQL可以在多种操作系统上运行,包括Linux、Windows、macOS等。 - **高性能**:MySQL以其快速的查询处理和良好的性能而闻名。 - **可靠性**:MySQL提供了多种机制来确保数据的完整性和可靠性,包括事务支持、备份和恢复功能。 - **易于使用**:MySQL提供了简单直观的界面和丰富的文档,便于用户学习和使用。 - **可扩展性**:MySQL支持从小型应用到大型企业级应用的扩展。 - **社区支持**:由于其广泛的使用,MySQL拥有一个活跃的开发者社区,提供大量的资源和支持。 MySQL被广泛应用于各种场景,包括在线事务处理(OL
recommend-type

2024版国内外期刊最全信息库(6万多本期刊)(全新整理)

1、资源内容地址:https://blog.csdn.net/2301_79696294/article/details/140405010 2、代码特点:今年全新,手工精心整理,放心引用,数据来自权威,相对于其他人的控制变量数据准确很多,适合写论文做实证用 ,不会出现数据造假问题 3、适用对象:大学生,本科生,研究生小白可用,容易上手!!! 3、课程引用: 经济学,地理学,城市规划与城市研究,公共政策与管理,社会学,商业与管理 数据指标说明 【包含主要内容】 学科分类状态 期刊语言微信公众号定价邮发代码 期刊名称 电话出版区域邮箱 影响因子[知网]复合影响因子简介 主管部门 出版地址网址自引率[知网]综合影响因子 主办单位 主编 投稿网址国内统一刊号所属分区 是否TOP编辑部 官网微信号官网国际标准刊号地址 传真微信公号期刊等级邮编 是否OA期/掼賁浙鎳验刊状态 是否综述
recommend-type

.NET Windows编程:深度探索多线程技术

“20071010am--.NET Windows编程系列课程(15):多线程编程.pdf” 这篇PDF文档是关于.NET框架下的Windows编程,特别是多线程编程的教程。课程由邵志东讲解,适用于对.NET有一定基础的开发者,级别为Level200,即适合中等水平的学习者。课程内容涵盖从Windows编程基础到高级主题,如C#编程、图形编程、网络编程等,其中第12部分专门讨论多线程编程。 多线程编程是现代软件开发中的重要概念,它允许在一个进程中同时执行多个任务,从而提高程序的效率和响应性。线程是程序执行的基本单位,每个线程都有自己的堆栈和CPU寄存器状态,可以在进程的地址空间内独立运行。并发执行的线程并不意味着它们会同时占用CPU,而是通过快速切换(时间片轮转)在CPU上交替执行,给人一种同时运行的错觉。 线程池是一种优化的线程管理机制,用于高效管理和复用线程,避免频繁创建和销毁线程带来的开销。异步编程则是另一种利用多线程提升效率的方式,它能让程序在等待某个耗时操作完成时,继续执行其他任务,避免阻塞主线程。 在实际应用中,应当根据任务的性质来决定是否使用线程。例如,当有多个任务可以并行且互不依赖时,使用多线程能提高程序的并发能力。然而,如果多个线程需要竞争共享资源,那么可能会引入竞态条件和死锁,这时需要谨慎设计同步策略,如使用锁、信号量或条件变量等机制来协调线程间的访问。 课程中还可能涉及到如何创建和管理线程,如何设置和调整线程的优先级,以及如何处理线程间的通信和同步问题。此外,可能会讨论线程安全的数据结构和方法,以及如何避免常见的多线程问题,如死锁和活锁。 .NET框架提供了丰富的API来支持多线程编程,如System.Threading命名空间下的Thread类和ThreadPool类。开发者可以利用这些工具创建新的线程,或者使用ThreadPool进行任务调度,以实现更高效的并发执行。 这份课程是学习.NET环境下的多线程编程的理想资料,它不仅会介绍多线程的基础概念,还会深入探讨如何在实践中有效利用多线程,提升软件性能。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

PHP数据库连接性能优化实战:从慢查询到极速响应,提升用户体验

![PHP数据库连接性能优化实战:从慢查询到极速响应,提升用户体验](https://ucc.alicdn.com/pic/developer-ecology/sidgjzoioz6ou_97b0465f5e534a94917c5521ceeae9b4.png?x-oss-process=image/resize,s_500,m_lfit) # 1. PHP数据库连接性能优化概述 在现代Web应用程序中,数据库连接性能对于应用程序的整体性能至关重要。优化PHP数据库连接可以提高应用程序的响应时间、吞吐量和稳定性。本文将深入探讨PHP数据库连接性能优化的理论基础和实践技巧,帮助您提升应用程序的
recommend-type

python xrange和range的区别

`xrange`和`range`都是Python中用于生成整数序列的函数,但在旧版的Python 2.x中,`xrange`更常用,而在新版的Python 3.x中,`range`成为了唯一的选择。 1. **内存效率**: - `xrange`: 这是一个迭代器,它不会一次性生成整个序列,而是按需计算下一个元素。这意味着当你遍历`xrange`时,它并不会占用大量内存。 - `range`: Python 3中的`range`也是生成器,但它会先创建整个列表,然后再返回。如果你需要处理非常大的数字范围,可能会消耗较多内存。 2. **语法**: - `xrange`:
recommend-type

遗传算法(GA)详解:自然进化启发的优化策略

遗传算法(Genetic Algorithms, GA)是一种启发式优化技术,其灵感来源于查尔斯·达尔文的自然选择进化理论。这种算法在解决复杂的优化问题时展现出强大的适应性和鲁棒性,特别是在数学编程、网络分析、分支与限界法等传统优化方法之外,提供了一种新颖且有效的解决方案。 GA的基本概念包括以下几个关键步骤: 1. **概念化算法**:遗传算法是基于生物进化的模拟,以个体(或解)的形式表示问题的可能答案。每个个体是一个可行的解决方案,由一组特征(也称为基因)组成,这些特征代表了解的属性。 2. **种群**:算法开始时,种群包含一定数量的随机生成的个体。这些个体通过fitness function(适应度函数)评估其解决方案的质量,即在解决问题上的优劣程度。 3. **繁殖**:根据每个个体的fitness值,算法选择父母进行繁殖。较高的适应度意味着更高的生存和繁殖机会,这确保了优秀的解在下一代中有更多的存在。 4. **竞争与选择**:在种群中,通过竞争和选择机制,最适应的个体被挑选出来,准备进入下一轮的遗传过程。 5. **生存与淘汰**:新生成的后代个体数量与上一代相同,而旧的一代将被淘汰。这个过程模仿了自然选择中的生存斗争,只有最适应环境的个体得以延续。 6. **遗传与变异**:新个体的基因组合来自两个或多个父母,这是一个遗传的过程。同时,随机变异也可能引入新的基因,增加了搜索空间的多样性,有助于跳出局部最优。 7. **迭代与收敛**:遗传算法通常通过多代迭代进行,每一代都可能导致种群结构的变化。如果设计得当,算法会逐渐收敛到全局最优解或者接近最优解。 8. **应用领域广泛**:GA可用于解决各种优化问题,如网络路由、机器学习中的参数优化、工程设计、生产调度等。它与其他优化技术(如网络分析、分支与-bound、模拟退火和禁忌搜索)相辅相成,提供了解决复杂问题的多样化手段。 遗传算法作为一种模仿自然界的优化工具,不仅具备内在的鲁棒性,而且能够处理非线性、非凸和多目标优化问题,具有很高的实用价值。通过深入理解其核心原理和操作流程,我们可以有效地将这种技术应用于实际的IT项目中,提高解决问题的效率和质量。