data = pd.read_excel(r"E:\desktop\附件1.xlsx").values
时间: 2024-05-31 09:10:05 浏览: 202
这行代码是用 pandas 库中的 read_excel 函数读取了一个名为 "附件1.xlsx" 的 Excel 文件,并将其转换为一个 NumPy 数组(即 values 属性),然后将结果赋值给变量 data。
其中,文件路径 "E:\desktop\附件1.xlsx" 应该替换成实际文件存储的路径。如果文件与代码文件在同一目录下,也可以使用相对路径来指定文件路径。
相关问题
data = pd.read_excel(r'C:\Users\Lenovo\Desktop\data.xlsx')将其中的数据转成一维且不改变形状
可以使用Pandas库中的values属性将DataFrame对象转换为NumPy数组,然后使用NumPy的ravel或reshape方法将二维数组转换为一维数组,并且不改变原始数据的形状。
例如,假设有一个Excel文件data.xlsx,包含一个名为Sheet1的工作表,你想要将工作表中的数据转换为一维数组并且不改变原始数据的形状,可以使用以下代码:
```python
import pandas as pd
import numpy as np
# 读取Excel文件中的工作表数据
data = pd.read_excel(r'C:\Users\Lenovo\Desktop\data.xlsx', sheet_name='Sheet1')
# 将DataFrame对象转换为NumPy数组
X = data.values
# 将二维数组转换为一维数组并不改变原始数据的形状
X_flattened = X.ravel() # 或者使用 X.reshape(-1)
print(data)
print(X)
print(X_flattened)
```
运行结果如下:
```
A B C
0 1 4 7
1 2 5 8
2 3 6 9
[[1 4 7]
[2 5 8]
[3 6 9]]
[1 4 7 2 5 8 3 6 9]
```
在这个示例中,我们使用了Pandas库的read_excel方法读取Excel文件中的工作表数据,并将其转换为DataFrame对象data。然后,我们使用了DataFrame对象的values属性将DataFrame对象data转换为NumPy数组X,并且使用了NumPy的ravel方法将二维数组X转换为了一维数组X_flattened,并且不改变原始数据的形状。
需要注意的是,如果你修改了X_flattened,原始数据X也会被修改。如果你想要获取一个拷贝而不是视图,可以使用flatten方法,例如:
```python
X_flattened = X.flatten().copy()
```
这样就能够获得一个拷贝,而不是视图了。
import pandas as pd from keras.models import Sequential from keras.layers import Dense import numpy as np from sklearn.metrics import accuracy_score file = pd.read_excel('/Users/zxh-mac/desktop/Edu-Data(A题数据).xlsx') # 第二阶段:转化定性变量为定量变量 使用onehot函数 同时读取新的excel x = pd.get_dummies(file, dtype=int) x.to_excel('/Users/zxh-mac/desktop/Edu-Data(onehot_version).xlsx') data = pd.read_excel('/Users/zxh-mac/desktop/Edu-Data(onehot_version).xlsx') # 第三阶段:实现bp神经网络 train_data = data[:320] test_data = data[320:] train_features = train_data.drop('Class', axis=1).values train_labels = train_data['Class'].values test_features = test_data.drop('Class', axis=1).values test_labels = test_data['Class'].values model = Sequential() model.add(Dense(units=72, activation='relu', input_dim=train_features.shape[1])) model.add(Dense(units=72, activation='relu')) model.add(Dense(units=3, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(train_features, train_labels, epochs=10, batch_size=32, validation_data=(test_features, test_labels), verbose=1) predictions = model.predict(test_features) print(predictions)就是这段 无法确定问题是什么
这段代码的格式有些混乱,建议您按照以下方式进行修改:
1. 将 "import" 语句放在文件开头,便于管理和查看。
2. 在 "import" 语句后加上空行,使代码更易读。
3. 将代码分成多行,以提高可读性。
4. 确认文件路径是否正确,可以使用绝对路径来避免路径错误的问题。
5. 确认您是否安装了 keras 和 sklearn 库。
修改后的代码如下:
```
import pandas as pd
import numpy as np
from keras.models import Sequential
from keras.layers import Dense
from sklearn.metrics import accuracy_score
# 读取文件
file = pd.read_excel('/Users/zxh-mac/desktop/Edu-Data(A题数据).xlsx')
# 使用onehot函数转换定性变量为定量变量
x = pd.get_dummies(file, dtype=int)
x.to_excel('/Users/zxh-mac/desktop/Edu-Data(onehot_version).xlsx')
# 读取新的excel
data = pd.read_excel('/Users/zxh-mac/desktop/Edu-Data(onehot_version).xlsx')
# 划分训练集和测试集
train_data = data[:320]
test_data = data[320:]
# 提取特征和标签
train_features = train_data.drop('Class', axis=1).values
train_labels = train_data['Class'].values
test_features = test_data.drop('Class', axis=1).values
test_labels = test_data['Class'].values
# 建立模型
model = Sequential()
model.add(Dense(units=72, activation='relu', input_dim=train_features.shape[1]))
model.add(Dense(units=72, activation='relu'))
model.add(Dense(units=3, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# 训练模型
model.fit(train_features, train_labels, epochs=10, batch_size=32, validation_data=(test_features, test_labels), verbose=1)
# 预测测试集
predictions = model.predict(test_features)
print(predictions)
```
如果问题还存在,建议您给出具体的错误信息或者提示,以便我们更好地帮助您解决问题。
阅读全文