nsga2算法求解vrp问题的python代码,并绘图
时间: 2023-09-18 21:09:15 浏览: 169
以python库 的形式 实现 NSGA-II算法_python_代码_下载
5星 · 资源好评率100%
NSGA-II(Non-dominated Sorting Genetic Algorithm II)是一个常用的多目标优化算法,可以用于解决VRP问题。
以下是使用Python实现NSGA-II算法求解VRP问题的示例代码:
```Python
import numpy as np
import random
import matplotlib.pyplot as plt
# 参数设置
POP_SIZE = 50 # 种群大小
MUT_PROB = 0.1 # 变异概率
CROSS_PROB = 0.8 # 交叉概率
MAX_GEN = 100 # 最大迭代次数
N = 20 # 客户数
K = 5 # 车辆数
Q = 1 # 车辆容量
L = 100 # 路径长度限制
ALPHA = 1 # 距离惩罚系数
# 生成随机客户坐标和需求量
x = np.random.rand(N+1) * L
y = np.random.rand(N+1) * L
d = np.random.randint(1, Q+1, N+1)
# 计算客户之间的距离
dist = np.zeros((N+1, N+1))
for i in range(N+1):
for j in range(i+1, N+1):
dist[i][j] = dist[j][i] = np.sqrt((x[i]-x[j])**2 + (y[i]-y[j])**2)
# NSGA-II算法实现
class Individual:
def __init__(self):
self.x = [0] * (N+1)
self.f = [0] * 2
def evaluate(self):
# 计算每辆车的路径长度和
total_dist = [0] * K
load = [0] * K
for i in range(1, N+1):
k = self.x[i]
total_dist[k] += dist[self.x[i-1]][i] + ALPHA * max(load[k]+d[i]-Q, 0)
load[k] += d[i]
self.f[0] = max(total_dist)
self.f[1] = sum(total_dist)
def mutate(self):
for i in range(1, N+1):
if random.random() < MUT_PROB:
self.x[i] = random.randint(0, K-1)
def crossover(self, other):
if random.random() < CROSS_PROB:
c = random.randint(1, N-1)
for i in range(c, N+1):
self.x[i], other.x[i] = other.x[i], self.x[i]
class Population:
def __init__(self):
self.individuals = [Individual() for _ in range(POP_SIZE)]
def evaluate(self):
for individual in self.individuals:
individual.evaluate()
def select(self):
fronts = [[]]
S = [[] for _ in range(POP_SIZE)]
n = [0] * POP_SIZE
rank = [0] * POP_SIZE
for p in range(POP_SIZE):
for q in range(POP_SIZE):
if self.individuals[p].f[0] > self.individuals[q].f[0] and self.individuals[p].f[1] > self.individuals[q].f[1]:
S[p].append(q)
elif self.individuals[p].f[0] < self.individuals[q].f[0] and self.individuals[p].f[1] < self.individuals[q].f[1]:
n[p] += 1
if n[p] == 0:
rank[p] = 0
fronts[0].append(p)
i = 0
while fronts[i]:
Q = []
for p in fronts[i]:
for q in S[p]:
n[q] -= 1
if n[q] == 0:
rank[q] = i + 1
Q.append(q)
i += 1
fronts.append(Q)
del fronts[-1]
selected = []
for f in fronts:
if len(selected) + len(f) <= POP_SIZE:
selected += f
else:
c = len(selected) + len(f) - POP_SIZE
dists = []
for p in f:
dist = 0
for q in selected:
dist += np.sqrt((self.individuals[p].f[0]-self.individuals[q].f[0])**2 + (self.individuals[p].f[1]-self.individuals[q].f[1])**2)
dists.append(dist)
for p in np.argsort(dists)[:c]:
selected.append(f[p])
break
return [self.individuals[i] for i in selected]
def evolve(self):
self.evaluate()
offspring = []
for _ in range(POP_SIZE):
p1, p2 = random.sample(self.select(), 2)
child = Individual()
child.x = p1.x.copy()
child.crossover(p2)
child.mutate()
offspring.append(child)
self.individuals += offspring
self.evaluate()
fronts = [[]]
for p in range(POP_SIZE*2):
for q in range(POP_SIZE*2):
if self.individuals[p].f[0] > self.individuals[q].f[0] and self.individuals[p].f[1] > self.individuals[q].f[1]:
self.individuals[p].dom += 1
elif self.individuals[p].f[0] < self.individuals[q].f[0] and self.individuals[p].f[1] < self.individuals[q].f[1]:
self.individuals[p].dom -= 1
if self.individuals[p].dom == 0:
self.individuals[p].rank = 0
fronts[0].append(p)
i = 0
while fronts[i]:
Q = []
for p in fronts[i]:
for q in range(POP_SIZE*2):
if self.individuals[p].dom == 1 and self.individuals[q].dom == -1:
self.individuals[q].dom = 0
self.individuals[q].rank = i + 1
Q.append(q)
i += 1
fronts.append(Q)
del fronts[-1]
self.individuals = [self.individuals[i] for f in fronts for i in f]
while len(self.individuals) > POP_SIZE:
del self.individuals[-1]
def show(self):
plt.scatter([ind.f[0] for ind in self.individuals], [ind.f[1] for ind in self.individuals])
plt.xlabel('Max Distance')
plt.ylabel('Total Distance')
plt.show()
# 初始化种群
pop = Population()
for ind in pop.individuals:
ind.x = [random.randint(0, K-1) for _ in range(N+1)]
# 进化
for gen in range(MAX_GEN):
pop.evolve()
# 显示结果
pop.show()
```
上面的代码中使用了Matplotlib库来绘制种群的Pareto前沿线。在此之前需要先执行以下代码安装Matplotlib:
```Python
!pip install matplotlib
```
执行完毕后,可以调用NSGA-II算法求解VRP问题,并绘制出结果。其中,每个点代表一个解,横坐标为最大路径长度,纵坐标为总路径长度。Pareto前沿线上的点都是非支配解,即没有其他解能同时达到比它更好的两个目标值。
注意:由于NSGA-II算法使用了随机性,每次运行的结果可能会有所不同。
阅读全文