输入列表用python实现CGAN生成列表
时间: 2024-03-24 11:18:33 浏览: 102
首先,需要确定生成列表的具体规则,例如列表中元素的数据类型、元素数量等等。假设我们要生成一个包含10个随机整数的列表,可以使用以下代码实现CGAN生成列表:
```python
import numpy as np
from keras.layers import Input, Dense, Reshape, Flatten, Dropout, concatenate
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.convolutional import Conv2D, Conv2DTranspose
from keras.models import Sequential, Model
from keras.optimizers import Adam
# 定义生成器
def build_generator():
noise_shape = (100,)
model = Sequential()
model.add(Dense(256, input_shape=noise_shape))
model.add(LeakyReLU(alpha=0.2))
model.add(Dense(512))
model.add(LeakyReLU(alpha=0.2))
model.add(Dense(1024))
model.add(LeakyReLU(alpha=0.2))
model.add(Dense(10, activation='tanh'))
model.add(Reshape((1, 10)))
noise = Input(shape=noise_shape)
img = model(noise)
return Model(noise, img)
# 定义判别器
def build_discriminator():
model = Sequential()
model.add(Flatten(input_shape=(1, 10)))
model.add(Dense(512))
model.add(LeakyReLU(alpha=0.2))
model.add(Dense(256))
model.add(LeakyReLU(alpha=0.2))
model.add(Dense(1, activation='sigmoid'))
img = Input(shape=(1, 10))
validity = model(img)
return Model(img, validity)
# 定义CGAN
def build_cgan(generator, discriminator):
noise = Input(shape=(100,))
label = Input(shape=(1, 10))
img = generator(noise)
discriminator.trainable = False
validity = discriminator(img)
concatenated = concatenate([noise, label], axis=1)
combined = discriminator(concatenated)
cgan = Model([noise, label], [validity, combined])
cgan.compile(loss=['binary_crossentropy', 'binary_crossentropy'], optimizer=Adam(0.0002, 0.5))
return cgan
# 生成随机整数列表
def generate_random_list(generator):
noise = np.random.normal(0, 1, (1, 100))
label = np.random.uniform(-1, 1, (1, 1, 10))
generated_list = generator.predict([noise, label])
generated_list = np.squeeze(generated_list)
return generated_list
# 训练CGAN
def train(generator, discriminator, cgan, epochs, batch_size):
X_train = np.random.uniform(-1, 1, (10000, 1, 10))
valid = np.ones((batch_size, 1))
fake = np.zeros((batch_size, 1))
for epoch in range(epochs):
idx = np.random.randint(0, X_train.shape[0], batch_size)
real_lists = X_train[idx]
noise = np.random.normal(0, 1, (batch_size, 100))
fake_lists = generator.predict([noise, real_lists])
d_loss_real = discriminator.train_on_batch(real_lists, valid)
d_loss_fake = discriminator.train_on_batch(fake_lists, fake)
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
noise = np.random.normal(0, 1, (batch_size, 100))
g_loss = cgan.train_on_batch([noise, real_lists], [valid, fake])
if epoch % 100 == 0:
random_list = generate_random_list(generator)
print("Epoch %d: D_loss = %f, G_loss = %f, generated_list = %s" % (epoch, d_loss, g_loss[0], random_list))
# 构建CGAN模型
generator = build_generator()
discriminator = build_discriminator()
cgan = build_cgan(generator, discriminator)
# 训练CGAN模型
train(generator, discriminator, cgan, epochs=5000, batch_size=128)
```
在训练过程中,我们每100个epoch生成一次随机整数列表,并输出当前的D_loss、G_loss以及生成的列表。最终,训练完成后,我们可以通过调用`generate_random_list`函数来生成任意数量的随机整数列表。
阅读全文