生成一段Deepfool图像攻击算法的代码
时间: 2023-10-12 18:19:37 浏览: 114
图像算法代码实现
下面是一个简单的DeepFool图像攻击算法的代码实现。请注意,此代码仅用于演示目的,实际应用中需要进行更多的优化和调整。
```python
import numpy as np
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from PIL import Image
# 加载预训练的模型
model = torch.hub.load('pytorch/vision:v0.6.0', 'resnet18', pretrained=True)
model.eval()
# 定义DeepFool算法
def deepfool(image, net, num_classes=10, overshoot=0.02, max_iter=50):
"""
:param image: 输入的图像
:param net: 预训练的模型
:param num_classes: 分类数
:param overshoot: 步长
:param max_iter: 最大迭代次数
:return: 扰动后的图像和扰动大小
"""
# 将图像转换为张量
image = transforms.ToTensor()(image).unsqueeze(0)
# 将模型转换为eval模式
net.eval()
# 计算初始类别
f_image = net.forward(image).data.cpu().numpy().flatten()
I = (np.array(f_image)).flatten().argsort()[::-1]
# 初始化扰动
pert_image = copy.deepcopy(image)
w = np.zeros(image.size())
# 迭代
k_i = I[0]
iteration = 0
while k_i == I[0] and iteration < max_iter:
# 计算梯度
x = Variable(pert_image, requires_grad=True)
fs = net.forward(x)
pert = torch.Tensor([0.0]).cuda()
grad_orig = torch.zeros(fs.size()).cuda()
grad = torch.zeros(fs.size()).cuda()
for i in range(num_classes):
if i == I[0]:
grad_orig[:, i] = torch.autograd.grad(fs[:, i], x, retain_graph=True)[0]
else:
grad[:, i] = torch.autograd.grad(fs[:, i], x, retain_graph=True)[0]
# 计算最小扰动
for i in range(1, num_classes):
if k_i != I[i]:
p_i = (grad_orig - grad[i]).data.cpu().numpy()
pert_i = abs(p_i).max() / np.linalg.norm(p_i.flatten())
if pert_i < pert:
pert = pert_i
w = p_i
# 更新扰动
r_i = (1 + overshoot) * w
pert_image = image + (1 + overshoot) * w
pert_image = torch.clamp(pert_image, 0, 1).detach()
f_pert_image = net.forward(pert_image).data.cpu().numpy().flatten()
I = (np.array(f_pert_image)).flatten().argsort()[::-1]
# 更新迭代次数和目标类别
k_i = I[0]
iteration += 1
# 计算扰动大小
pert = np.linalg.norm((pert_image - image).numpy().flatten(), ord=2)
return pert_image, pert
# 加载图像并应用DeepFool算法
image = Image.open('example.jpg')
pert_image, pert = deepfool(image, model)
# 保存扰动后的图像
transforms.ToPILImage()(pert_image.squeeze()).save('perturbed_image.jpg')
```
以上是一个简单的DeepFool图像攻击算法的实现,该算法可以生成一些误导性的扰动,从而欺骗神经网络对图像进行错误分类。
阅读全文