y_train_pred = y_train_pred.reshape(1, -1)是什么意思
时间: 2023-10-06 20:06:40 浏览: 148
这行代码的作用是将y_train_pred的形状从原来的一维数组(或者说行向量)转换为一个具有一行多列的二维数组。
其中,参数"1"表示第一维的大小为1,即只有一行;而参数"-1"表示第二维的大小自动调整,以保证总元素个数不变。实际上,"-1"的值会被自动计算为原始数组中元素的总个数,除以第一维的大小,也就是1。
这样做的目的可能是为了方便后续的计算或者其他操作,因为很多函数或方法要求输入的数据必须是二维数组,而一维数组则不符合要求。
相关问题
train_errors = [] test_errors = [] for lambda_val in lambdas: pipeline = Pipeline([ ('polynomial_features', PolynomialFeatures(degree=5)), ('ridge_regression', c.SGDLinearRegressor(batch_size=20, eta=0.01, tau_max=1000, epsilon=0.00001, lambda_=lambda_val, random_state=42))]) train_mse = 0 test_mse = 0 for i in range(10): X_train, y_train = c.generate_data(20) X_test, y_test = c.generate_data(1000) pipeline.fit(X_train.reshape(-1, 1), y_train) y_train_pred = pipeline.predict(X_train.reshape(-1, 1)) y_test_pred = pipeline.predict(X_test.reshape(-1, 1)) train_mse += mean_squared_error(y_train, y_train_pred) test_mse += mean_squared_error(y_test, y_test_pred) train_errors.append(train_mse / 10) test_errors.append(test_mse / 10)给这段代码加注释
下面是加了注释的代码:
```python
# 定义两个空列表,用于存储不同正则化参数下的训练误差和测试误差
train_errors = []
test_errors = []
# 遍历一系列正则化参数值
for lambda_val in lambdas:
# 定义管道对象,包含多项式特征转换和SGD线性回归模型
pipeline = Pipeline([
('polynomial_features', PolynomialFeatures(degree=5)),
('ridge_regression', c.SGDLinearRegressor(batch_size=20, eta=0.01, tau_max=1000,
epsilon=0.00001, lambda_=lambda_val, random_state=42))
])
# 定义训练误差和测试误差
train_mse = 0
test_mse = 0
# 对每个正则化参数值进行10次训练和测试
for i in range(10):
# 生成20个训练样本和对应标签,1000个测试样本和对应标签
X_train, y_train = c.generate_data(20)
X_test, y_test = c.generate_data(1000)
# 在训练集上拟合模型
pipeline.fit(X_train.reshape(-1, 1), y_train)
# 在训练集和测试集上进行预测
y_train_pred = pipeline.predict(X_train.reshape(-1, 1))
y_test_pred = pipeline.predict(X_test.reshape(-1, 1))
# 计算并累加训练误差和测试误差
train_mse += mean_squared_error(y_train, y_train_pred)
test_mse += mean_squared_error(y_test, y_test_pred)
# 将每个正则化参数值下的训练误差和测试误差除以10,并存储到对应的列表中
train_errors.append(train_mse / 10)
test_errors.append(test_mse / 10)
```
注释中解释了代码的每个部分的作用和功能,包括定义列表、遍历正则化参数、定义管道对象、生成数据、拟合模型、预测,以及计算训练误差和测试误差。通过注释,可以更加清晰地理解代码的功能和执行流程。
for epoch in range(config.epochs): model.train() running_loss = 0 train_bar = tqdm(train_loader) # 形成进度条 for data in train_bar: x_train, y_train = data # 解包迭代器中的X和Y optimizer.zero_grad() y_train_pred = model(x_train) loss = loss_function(y_train_pred, y_train.reshape(-1, 1)) loss.backward() optimizer.step() running_loss += loss.item() train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1, config.epochs, loss) # 模型验证 model.eval() test_loss = 0 with torch.no_grad(): test_bar = tqdm(test_loader) for data in test_bar: x_test, y_test = data y_test_pred = model(x_test) test_loss = loss_function(y_test_pred, y_test.reshape(-1, 1)) # r2 = r2_score(y_test, y_test_pred) # Adjust_RR = 1 - (1 - r2) * (1440 - 1) / (1440 - 1 - 1) if test_loss < config.best_loss: config.best_loss = test_loss torch.save(model.state_dict(), config.save_path) 后加什么代码能得到未来一定时间的预测值
要得到未来一段时间的预测值,需要按照以下步骤进行:
1.根据模型的输入数据要求,准备未来一段时间的历史数据,用于输入到模型中进行预测。
2.使用模型进行预测。将准备好的历史数据输入到模型中进行预测,得到未来一段时间的预测结果。
3.将预测结果进行后处理。根据实际需求,对预测结果进行后处理,例如进行归一化处理、逆变换等操作。
下面是示例代码,用于得到未来一段时间的预测值:
```python
# 准备输入数据
input_data = # 准备未来一段时间的历史数据
# 使用模型进行预测
model.eval()
with torch.no_grad():
for i in range(future_time_steps):
pred = model(input_data)
input_data = torch.cat((input_data[:, 1:, :], pred), axis=1)
# 将预测结果进行后处理
pred = pred.cpu().numpy() # 转换为numpy数组
pred = # 进行后处理操作,例如归一化处理、逆变换等操作
# 输出预测结果
print(pred)
```
其中,`future_time_steps`代表需要预测的未来时间步数,`input_data`是历史数据的张量,`pred`是模型的预测结果。在每次预测完成后,将预测结果加入到`input_data`中,用于下一次预测。需要注意的是,以上示例代码仅供参考,实际使用时需要根据模型的具体要求进行调整。
阅读全文