y_train_pred = y_train_pred.reshape(1, -1)是什么意思

时间: 2023-10-06 17:06:40 浏览: 91
这行代码的作用是将y_train_pred的形状从原来的一维数组(或者说行向量)转换为一个具有一行多列的二维数组。 其中,参数"1"表示第一维的大小为1,即只有一行;而参数"-1"表示第二维的大小自动调整,以保证总元素个数不变。实际上,"-1"的值会被自动计算为原始数组中元素的总个数,除以第一维的大小,也就是1。 这样做的目的可能是为了方便后续的计算或者其他操作,因为很多函数或方法要求输入的数据必须是二维数组,而一维数组则不符合要求。
相关问题

train_errors = [] test_errors = [] for lambda_val in lambdas: pipeline = Pipeline([ ('polynomial_features', PolynomialFeatures(degree=5)), ('ridge_regression', c.SGDLinearRegressor(batch_size=20, eta=0.01, tau_max=1000, epsilon=0.00001, lambda_=lambda_val, random_state=42))]) train_mse = 0 test_mse = 0 for i in range(10): X_train, y_train = c.generate_data(20) X_test, y_test = c.generate_data(1000) pipeline.fit(X_train.reshape(-1, 1), y_train) y_train_pred = pipeline.predict(X_train.reshape(-1, 1)) y_test_pred = pipeline.predict(X_test.reshape(-1, 1)) train_mse += mean_squared_error(y_train, y_train_pred) test_mse += mean_squared_error(y_test, y_test_pred) train_errors.append(train_mse / 10) test_errors.append(test_mse / 10)给这段代码加注释

下面是加了注释的代码: ```python # 定义两个空列表,用于存储不同正则化参数下的训练误差和测试误差 train_errors = [] test_errors = [] # 遍历一系列正则化参数值 for lambda_val in lambdas: # 定义管道对象,包含多项式特征转换和SGD线性回归模型 pipeline = Pipeline([ ('polynomial_features', PolynomialFeatures(degree=5)), ('ridge_regression', c.SGDLinearRegressor(batch_size=20, eta=0.01, tau_max=1000, epsilon=0.00001, lambda_=lambda_val, random_state=42)) ]) # 定义训练误差和测试误差 train_mse = 0 test_mse = 0 # 对每个正则化参数值进行10次训练和测试 for i in range(10): # 生成20个训练样本和对应标签,1000个测试样本和对应标签 X_train, y_train = c.generate_data(20) X_test, y_test = c.generate_data(1000) # 在训练集上拟合模型 pipeline.fit(X_train.reshape(-1, 1), y_train) # 在训练集和测试集上进行预测 y_train_pred = pipeline.predict(X_train.reshape(-1, 1)) y_test_pred = pipeline.predict(X_test.reshape(-1, 1)) # 计算并累加训练误差和测试误差 train_mse += mean_squared_error(y_train, y_train_pred) test_mse += mean_squared_error(y_test, y_test_pred) # 将每个正则化参数值下的训练误差和测试误差除以10,并存储到对应的列表中 train_errors.append(train_mse / 10) test_errors.append(test_mse / 10) ``` 注释中解释了代码的每个部分的作用和功能,包括定义列表、遍历正则化参数、定义管道对象、生成数据、拟合模型、预测,以及计算训练误差和测试误差。通过注释,可以更加清晰地理解代码的功能和执行流程。

# 实现高斯核函数 def rbf_kernel(x1, x2): sigma=1.0 return np.exp(-np.linalg.norm(x1-x2,2)**2/sigma) # 加载葡萄酒识别数据集 wine = datasets.load_wine() # 处理数据和标签 X= wine["data"][:,(0,1)] y = 2 * (wine["target"]==1).astype(np.int64).reshape(-1,1) - 1 # 按照一定比例划分训练集和测试集(测试集占0.4) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=5) # 定义KernelSVM模型 # 训练模型 # 用Pyplot作图工具绘制模型预测边界 x0s = np.linspace(10, 15, 100) x1s = np.linspace(0, 7, 100) x0, x1 = np.meshgrid(x0s, x1s) W = np.c_[x0.ravel(), x1.ravel()] u= model.predict(W).reshape(x0.shape) plt.plot(X_train[:, 0][y_train[:,0]==1] , X_train[:, 1][y_train[:,0]==1], "gs") plt.plot(X_train[:, 0][y_train[:,0]==-1], X_train[:, 1][y_train[:,0]==-1], "ro") plt.contourf(x0, x1, u, alpha=0.2) plt.show() #计算指标 from sklearn.metrics import accuracy_score from sklearn.metrics import recall_score from sklearn.metrics import precision_score from sklearn.metrics import f1_score accuracy = accuracy_score(y_test, y_pred) precision = precision_score(y_test, y_pred) recall = recall_score(y_test, y_pred) f1 = f1_score(y_test, y_pred) print("accuracy = {}".format(accuracy)) print("precision = {}".format(precision)) print("recall = {}".format(recall)) print("f1 = {}".format(f1))补全代码

抱歉,上面的代码仍然不完整,缺少了定义KernelSVM模型和训练模型的部分。以下是完整的代码: ``` # 实现高斯核函数 def rbf_kernel(x1, x2): sigma=1.0 return np.exp(-np.linalg.norm(x1-x2,2)**2/sigma) # 加载葡萄酒识别数据集 wine = datasets.load_wine() # 处理数据和标签 X= wine["data"][:,(0,1)] y = 2 * (wine["target"]==1).astype(np.int64).reshape(-1,1) - 1 # 按照一定比例划分训练集和测试集(测试集占0.4) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=5) # 定义KernelSVM模型 svm_clf = Pipeline([ ("scaler", StandardScaler()), ("svm_clf", SVC(kernel="rbf", gamma=5, C=0.001)) ]) # 训练模型 svm_clf.fit(X_train, y_train.ravel()) # 用Pyplot作图工具绘制模型预测边界 x0s = np.linspace(10, 15, 100) x1s = np.linspace(0, 7, 100) x0, x1 = np.meshgrid(x0s, x1s) W = np.c_[x0.ravel(), x1.ravel()] u= svm_clf.predict(W).reshape(x0.shape) plt.plot(X_train[:, 0][y_train[:,0]==1] , X_train[:, 1][y_train[:,0]==1], "gs") plt.plot(X_train[:, 0][y_train[:,0]==-1], X_train[:, 1][y_train[:,0]==-1], "ro") plt.contourf(x0, x1, u, alpha=0.2) plt.show() # 计算指标 y_pred = svm_clf.predict(X_test) accuracy = accuracy_score(y_test, y_pred) precision = precision_score(y_test, y_pred) recall = recall_score(y_test, y_pred) f1 = f1_score(y_test, y_pred) print("accuracy = {}".format(accuracy)) print("precision = {}".format(precision)) print("recall = {}".format(recall)) print("f1 = {}".format(f1)) ``` 其中,`SVC`是Scikit-Learn库中的SVM模型,`Pipeline`是Scikit-Learn库中的管道模型,用于将多个数据预处理和模型组合成一个整体。

相关推荐

import pandas as pd from sklearn.preprocessing import MinMaxScaler from sklearn.model_selection import train_test_split from keras.models import Sequential from keras.layers import Dense from keras.models import load_model model = load_model('model.h5') # 读取Excel文件 data = pd.read_excel('D://数据1.xlsx', sheet_name='4') # 把数据分成输入和输出 X = data.iloc[:, 0:5].values y = data.iloc[:, 0:5].values # 对输入和输出数据进行归一化 scaler_X = MinMaxScaler(feature_range=(0, 6)) X = scaler_X.fit_transform(X) scaler_y = MinMaxScaler(feature_range=(0, 6)) y = scaler_y.fit_transform(y) # 将数据集分成训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) # 创建神经网络模型 model = Sequential() model.add(Dense(units=4, input_dim=4, activation='relu')) model.add(Dense(units=36, activation='relu')) model.add(Dense(units=4, activation='relu')) model.add(Dense(units=4, activation='linear')) # 编译模型 model.compile(loss='mean_squared_error', optimizer='sgd') # 训练模型 model.fit(X_train, y_train, epochs=100, batch_size=1257) # 评估模型 score = model.evaluate(X_test, y_test, batch_size=30) print('Test loss:', score) # 使用训练好的模型进行预测 X_test_scaled = scaler_X.transform(X_test) y_pred = model.predict(X_test_scaled) # 对预测结果进行反归一化 y_pred_int = scaler_y.inverse_transform(y_pred).round().astype(int) # 构建带有概率的预测结果 y_pred_prob = pd.DataFrame(y_pred_int, columns=data.columns[:4]) mse = ((y_test - y_pred) ** 2).mean(axis=None) y_pred_prob['Probability'] = 1 / (1 + mse - ((y_pred_int - y_test) ** 2).mean(axis=None)) # 过滤掉和值超过6或小于6的预测值 y_pred_filtered = y_pred_prob[(y_pred_prob.iloc[:, :4].sum(axis=1) == 6)] # 去除重复的行 y_pred_filtered = y_pred_filtered.drop_duplicates() # 重新计算低于1.2的 Probability 值 low_prob_indices = y_pred_filtered[y_pred_filtered['Probability'] < 1.5].index for i in low_prob_indices: y_pred_int_i = y_pred_int[i] y_test_i = y_test[i] mse_i = ((y_test_i - y_pred_int_i) ** 2).mean(axis=None) new_prob_i = 1 / (1 + mse_i - ((y_pred_int_i - y_test_i) ** 2).mean(axis=None)) y_pred_filtered.at[i, 'Probability'] = new_prob_i # 打印带有概率的预测结果 print('Predicted values with probabilities:') print(y_pred_filtered)这段代码有问题,你帮忙改一下

import pandas as pd import numpy as np from sklearn.preprocessing import MinMaxScaler from keras.models import Sequential from keras.layers import Dense, LSTM import matplotlib.pyplot as plt # 读取CSV文件 data = pd.read_csv('77.csv', header=None) # 将数据集划分为训练集和测试集 train_size = int(len(data) * 0.7) train_data = data.iloc[:train_size, 1:2].values.reshape(-1,1) test_data = data.iloc[train_size:, 1:2].values.reshape(-1,1) # 对数据进行归一化处理 scaler = MinMaxScaler(feature_range=(0, 1)) train_data = scaler.fit_transform(train_data) test_data = scaler.transform(test_data) # 构建训练集和测试集 def create_dataset(dataset, look_back=1): X, Y = [], [] for i in range(len(dataset) - look_back): X.append(dataset[i:(i+look_back), 0]) Y.append(dataset[i+look_back, 0]) return np.array(X), np.array(Y) look_back = 3 X_train, Y_train = create_dataset(train_data, look_back) X_test, Y_test = create_dataset(test_data, look_back) # 转换为LSTM所需的输入格式 X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1)) X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1)) # 构建LSTM模型 model = Sequential() model.add(LSTM(units=50, return_sequences=True, input_shape=(look_back, 1))) model.add(LSTM(units=50)) model.add(Dense(units=1)) model.compile(optimizer='adam', loss='mean_squared_error') model.fit(X_train, Y_train, epochs=100, batch_size=32) # 预测测试集并进行反归一化处理 Y_pred = model.predict(X_test) Y_pred = scaler.inverse_transform(Y_pred) Y_test = scaler.inverse_transform(Y_test) # 输出RMSE指标 rmse = np.sqrt(np.mean((Y_pred - Y_test)**2)) print('RMSE:', rmse) # 绘制训练集真实值和预测值图表 train_predict = model.predict(X_train) train_predict = scaler.inverse_transform(train_predict) train_actual = scaler.inverse_transform(Y_train.reshape(-1, 1)) plt.plot(train_actual, label='Actual') plt.plot(train_predict, label='Predicted') plt.title('Training Set') plt.xlabel('Time (h)') plt.ylabel('kWh') plt.legend() plt.show() # 绘制测试集真实值和预测值图表 plt.plot(Y_test, label='Actual') plt.plot(Y_pred, label='Predicted') plt.title('Testing Set') plt.xlabel('Time (h)') plt.ylabel('kWh') plt.legend() plt.show()以上代码运行时报错,错误为ValueError: Expected 2D array, got 1D array instead: array=[-0.04967795 0.09031832 0.07590125]. Reshape your data either using array.reshape(-1, 1) if your data has a single feature or array.reshape(1, -1) if it contains a single sample.如何进行修改

from keras.models import Sequential from keras.layers import Dense from sklearn.preprocessing import MinMaxScaler import numpy as np from sklearn.model_selection import train_test_split # 加载数据集,18列数据 dataset = np.loadtxt(r'D:\python-learn\asd.csv', delimiter=",",skiprows=1) # 划分数据, 使用17列数据来预测最后一列 X = dataset[:,0:17] y = dataset[:,17] # 归一化 scaler = MinMaxScaler(feature_range=(0, 1)) X = scaler.fit_transform(X) y = scaler.fit_transform(y.reshape(-1, 1)) # 将数据集分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) # 创建模型 model = Sequential() model.add(Dense(64, input_dim=17, activation='relu')) model.add(Dense(32, activation='relu')) model.add(Dense(16, activation='relu')) model.add(Dense(8, activation='relu')) model.add(Dense(1, activation='linear')) # 编译模型, 选择MSE作为损失函数 model.compile(loss='mse', optimizer='adam') # 训练模型, 迭代1000次 model.fit(X_train, y_train, epochs=300, batch_size=32) score= model.evaluate(X_train, y_train) print('Test loss:', score) # 评估神经网络模型 score= model.evaluate(X_test,y_test) print('Test loss:', score) # 预测结果 dataset = np.loadtxt(r'D:\python-learn\testdata.csv', delimiter=",",skiprows=1) X = dataset[:,0:17] scaler = MinMaxScaler(feature_range=(0, 1)) X = scaler.fit_transform(X) y = scaler.fit_transform(y.reshape(-1, 1)) # pred_Y = model.predict(X) print("Predicted value:", pred_Y) from sklearn.metrics import mean_squared_error, r2_score # y_true是真实值,y_pred是预测值 # 计算均方误差 y_true = dataset[:,-1] mse = mean_squared_error(y_true, pred_Y) # 计算决定系数 r2 = r2_score(y_true, pred_Y) # 输出均方误差和决定系数 print("均方误差: %.2f" % mse) print("决定系数: %.2f" % r2) import matplotlib.pyplot as plt plt.scatter(y_true, pred_Y) # 添加x轴标签 plt.xlabel('真实值') # 添加y轴标签 plt.ylabel('预测值') # 添加图标题 plt.title('真实值与预测值的散点图') # 显示图像 plt.show()请你优化一下这段代码,尤其是归一化和反归一化过程

import numpy as np import pandas as pd import tensorflow as tf from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv1D, MaxPooling1D, Flatten, Dense, Dropout, Activation from sklearn.metrics import auc, accuracy_score, f1_score, recall_score # 读入数据 data = pd.read_csv('company_data.csv') X = data.iloc[:, :-1].values y = data.iloc[:, -1].values # 利用LabelEncoder将标签进行编码 encoder = LabelEncoder() y = encoder.fit_transform(y) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 对特征进行PCA降维 pca = PCA(n_components=17) X_train = pca.fit_transform(X_train) X_test = pca.transform(X_test) # 对数据reshape为符合卷积层输入的格式 X_train = X_train.reshape(-1, 17, 1) X_test = X_test.reshape(-1, 17, 1) # 构建卷积神经网络模型 model = Sequential() model.add(Conv1D(filters=128, kernel_size=3, activation='relu', input_shape=(17, 1))) model.add(Conv1D(filters=128, kernel_size=4, activation='relu')) model.add(Conv1D(filters=128, kernel_size=5, activation='relu')) model.add(MaxPooling1D(pool_size=2)) model.add(Flatten()) model.add(Dense(units=64, activation='relu')) model.add(Dense(units=1, activation='sigmoid')) # 编译模型 model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) # 训练模型 model.fit(X_train, y_train, batch_size=64, epochs=10, validation_data=(X_test, y_test), verbose=1) # 在测试集上评估模型 y_pred = model.predict(X_test) y_pred = np.round(y_pred).flatten() # 计算各项指标 auc_score = auc(y_test, y_pred) accuracy = accuracy_score(y_test, y_pred) f1score = f1_score(y_test, y_pred) recall = recall_score(y_test, y_pred) # 打印输出各项指标 print("AUC score:", auc_score) print("Accuracy:", accuracy) print("F1 score:", f1score) print("Recall:", recall) 这个代码有什么错误

import pandas as pd from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA from sklearn.model_selection import train_test_split from keras.models import Sequential from keras.layers import Dense, Conv1D, MaxPooling1D, Flatten from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix, classification_report from sklearn.metrics import roc_auc_score from sklearn.utils.class_weight import compute_class_weight # 读取数据 data = pd.read_csv('database.csv') # 数据预处理 X = data.iloc[:, :-1].values y = data.iloc[:, -1].values scaler = StandardScaler() X = scaler.fit_transform(X) # 特征选择 pca = PCA(n_components=10) X = pca.fit_transform(X) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) class_weights = compute_class_weight(class_weight='balanced', classes=np.unique(y_train), y=y_train) # 构建CNN模型 model = Sequential() model.add(Conv1D(filters=64, kernel_size=3, activation='relu', input_shape=(10, 1))) model.add(MaxPooling1D(pool_size=2)) model.add(Flatten()) model.add(Dense(10, activation='relu')) model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) # 训练模型 X_train = X_train.reshape((X_train.shape[0], X_train.shape[1], 1)) X_test = X_test.reshape((X_test.shape[0], X_test.shape[1], 1)) model.fit(X_train, y_train,class_weight=class_weights,epochs=100, batch_size=64, validation_data=(X_test, y_test)) # 预测结果 y_pred = model.predict(X_test) #检验值 accuracy = accuracy_score(y_test, y_pred) auc = roc_auc_score(y_test, y_pred) print(auc) print("Accuracy:", accuracy) print('Confusion Matrix:\n', confusion_matrix(y_test, y_pred)) print('Classification Report:\n', classification_report(y_test, y_pred))

data=xlsread('data_load'); % 按时间排序 load_data = sortrows(data, 1); % 生成训练集和测试集 train_ratio = 0.8; train_size = floor(train_ratio * size(load_data, 1)); train_data = load_data(1:train_size, 2:end); test_data = load_data(train_size+1:end, 2:end); % 数据归一化 train_data_norm = normalize(train_data); test_data_norm = normalize(test_data); % 准备训练数据 X_train = []; Y_train = []; n_steps = 3; % 每个时间步长包含的数据点数 for i = n_steps:size(train_data_norm, 1) X_train = [X_train; train_data_norm(i-n_steps+1:i, :)]; Y_train = [Y_train; train_data_norm(i, :)]; end % 调整训练数据的形状 X_train = permute(reshape(X_train', [], n_steps, size(X_train,1)), [3, 2, 1]); Y_train = permute(reshape(Y_train', [], n_steps, size(Y_train,1)), [3, 2, 1]); % 构建LSTM模型 input_size = size(train_data,2)-1; output_size = size(train_data,2)-1; num_hidden_units = 64; layers = [ ... sequenceInputLayer(input_size) lstmLayer(num_hidden_units,'OutputMode','last') fullyConnectedLayer(output_size) regressionLayer]; % 训练模型 opts = trainingOptions('adam', ... 'MaxEpochs',50, ... 'GradientThreshold',1, ... 'InitialLearnRate',0.01, ... 'LearnRateSchedule','piecewise', ... 'LearnRateDropFactor',0.1, ... 'LearnRateDropPeriod',30, ... 'Verbose',0, ... 'Plots','training-progress'); trained_net = trainNetwork(X_train, Y_train, layers, opts); % 准备测试数据 X_test = []; Y_test = []; for i = n_steps:size(test_data_norm, 1) X_test = [X_test; test_data_norm(i-n_steps+1:i, :)]; Y_test = [Y_test; test_data_norm(i, :)]; end % 调整测试数据的形状 X_test = reshape(X_test, [size(X_test,1), n_steps, size(test_data,2)-1]); Y_test = reshape(Y_test, [size(Y_test,1), size(test_data,2)-1]); % 进行预测 Y_pred = predict(trained_net, X_test); % 反归一化预测结果 Y_pred = Y_pred .* max(train_data) + min(train_data); Y_test = Y_test .* max(train_data) + min(train_data); % 绘制预测结果 figure plot(Y_test(:,1), 'b') hold on plot(Y_pred(:,1), 'r') legend('真实值', '预测值') title('负荷预测结果') xlabel('时间步长') ylabel('负荷值')

最新推荐

recommend-type

NexusSetup.exe是Nexus设备设置程序的执行文件

这款Windows Dock栏工具解决了窗口遮挡问题,支持将窗口最小化至Dock栏,相比mydock稳定性更好,而相比bitdock体积更小,是一款适中的优秀选择,值得推荐。。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

某航天所智能制造实施方案(交付版).pptx

某航天所智能制造实施方案(交付版).pptx
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】井字棋游戏:开发井字棋游戏,重点在于AI对手的实现。

![【实战演练】井字棋游戏:开发井字棋游戏,重点在于AI对手的实现。](https://img-blog.csdnimg.cn/3d6666081a144d04ba37e95dca25dbd8.png) # 2.1 井字棋游戏规则 井字棋游戏是一个两人对弈的游戏,在3x3的棋盘上进行。玩家轮流在空位上放置自己的棋子(通常为“X”或“O”),目标是让自己的棋子连成一条直线(水平、垂直或对角线)。如果某位玩家率先完成这一目标,则该玩家获胜。 游戏开始时,棋盘上所有位置都为空。玩家轮流放置自己的棋子,直到出现以下情况之一: * 有玩家连成一条直线,获胜。 * 棋盘上所有位置都被占满,平局。
recommend-type

transformer模型对话

Transformer模型是一种基于自注意力机制的深度学习架构,最初由Google团队在2017年的论文《Attention is All You Need》中提出,主要用于自然语言处理任务,如机器翻译和文本生成。Transformer完全摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN),转而采用全连接的方式处理序列数据,这使得它能够并行计算,极大地提高了训练速度。 在对话系统中,Transformer模型通过编码器-解码器结构工作。编码器将输入序列转化为固定长度的上下文向量,而解码器则根据这些向量逐步生成响应,每一步都通过自注意力机制关注到输入序列的所有部分,这使得模型能够捕捉到