def calcShannonEnt(dataSet): # 返回数据集行数,即样本数量 numEntries = len(dataSet) # 保存每个标签(label)出现次数的字典 labelCounts = {} # 对每组特征向量进行统计 for featVec in dataSet: currentLabel = featVec[-1] # 提取标签信息,最后一列数据,即响应变量的值,返回int类型 if currentLabel not in labelCounts.keys(): # 如果标签没有放入统计次数的字典,添加进去 labelCounts[currentLabel] = 0 labelCounts[currentLabel] += 1 # label计数 shannonEnt = 0.0 # 经验熵 # 计算经验熵 for key in labelCounts: prob = float(labelCounts[key]) / numEntries # 选择该标签的概率,labelCounts[key]是引用key对应的value值 shannonEnt -= prob * log(prob, 2) # 利用公式计算 return shannonEnt # 返回经验熵
时间: 2023-06-08 14:06:11 浏览: 155
这是一个Python中的函数,用于计算给定数据集的香农熵。香农熵是用于衡量数据集的无序程度或随机性的指标。它越高,说明数据集越杂乱无章,反之则说明数据集越有序。该函数接受一个数据集作为参数,并返回对该数据集进行计算之后的香农熵值。
相关问题
翻译成Java代码 def calcShannonEnt(dataSet): #返回数据集行数 numEntries=len(dataSet) #保存每个标签(label)出现次数的字典 labelCounts={} #对每组特征向量进行统计 for featVec in dataSet: currentLabel=featVec[-1] #提取标签信息 if currentLabel not in labelCounts.keys(): #如果标签没有放入统计次数的字典,添加进去 labelCounts[currentLabel]=0 labelCounts[currentLabel]+=1 #label计数 shannonEnt=0.0 #经验熵 #计算经验熵 for key in labelCounts: prob=float(labelCounts[key])/numEntries #选择该标签的概率 shannonEnt-=prob*log(prob,2) #利用公式计算 return shannonEnt #返回经验熵
以下是翻译成Java代码的结果:
```
public static double calcShannonEnt(ArrayList<ArrayList<String>> dataSet) {
// 返回数据集行数
int numEntries = dataSet.size();
// 保存每个标签(label)出现次数的字典
Map<String, Integer> labelCounts = new HashMap<String, Integer>();
// 对每组特征向量进行统计
for (ArrayList<String> featVec : dataSet) {
String currentLabel = featVec.get(featVec.size() - 1); // 提取标签信息
if (!labelCounts.containsKey(currentLabel)) { // 如果标签没有放入统计次数的字典,添加进去
labelCounts.put(currentLabel, 0);
}
labelCounts.put(currentLabel, labelCounts.get(currentLabel) + 1); // label计数
}
double shannonEnt = 0.0; // 经验熵
// 计算经验熵
for (String key : labelCounts.keySet()) {
double prob = (double) labelCounts.get(key) / numEntries; // 选择该标签的概率
shannonEnt -= prob * log(prob, 2); // 利用公式计算
}
return shannonEnt; // 返回经验熵
}
private static double log(double value, int base) {
return Math.log(value) / Math.log(base);
}
```
这是一个计算数据集经验熵的函数,输入参数为一个包含数据的二维ArrayList对象。函数首先计算数据集中不同标签出现的次数,然后根据公式计算经验熵并返回结果。
阅读全文