Matlab S-Function模糊神经网络代码
时间: 2023-06-11 20:07:01 浏览: 265
以下是一个简单的Matlab S-Function模糊神经网络代码示例:
```matlab
function [sys,x0,str,ts] = fuzzy_nn_sfun(t,x,u,flag)
switch flag
case 0 % Initialization
[sys,x0,str,ts]=mdlInitializeSizes;
case 2 % Update
sys = mdlUpdate(t,x,u);
case 3 % Outputs
sys = mdlOutputs(t,x,u);
case {1, 4, 9} % Unused flags
sys = [];
otherwise % Error handling
error(['Unhandled flag = ',num2str(flag)]);
end
%---------------------------------------------------------------
function [sys,x0,str,ts] = mdlInitializeSizes
sizes = simsizes;
sizes.NumContStates = 0;
sizes.NumDiscStates = 0;
sizes.NumOutputs = 1;
sizes.NumInputs = 2;
sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 1;
sys = simsizes(sizes);
x0 = [];
str = [];
ts = [0 0];
%---------------------------------------------------------------
function sys = mdlUpdate(t,x,u)
% Parameters
alpha = 0.01; % Learning rate
gamma = 0.9; % Discount factor
nFIS = 3; % Number of fuzzy inference systems
nMF = 3; % Number of membership functions
nOut = 1; % Number of outputs
% Inputs
state = u(1); % State
act = u(2); % Action
% Fuzzy inference systems
for i = 1:nFIS
% Initialize FIS
fis = mamfis('NumInputs',2,'NumOutputs',nOut,'NumMFs',nMF);
% Input 1: State
fis.Inputs(1).Name = 'state';
fis.Inputs(1).Range = [0 1];
for j = 1:nMF
fis.Inputs(1).mf(j).Name = ['state',num2str(j)];
fis.Inputs(1).mf(j).Type = 'gbellmf';
fis.Inputs(1).mf(j).Params = [(j-1)/(nMF-1),1,10];
end
% Input 2: Action
fis.Inputs(2).Name = 'action';
fis.Inputs(2).Range = [0 1];
for j = 1:nMF
fis.Inputs(2).mf(j).Name = ['action',num2str(j)];
fis.Inputs(2).mf(j).Type = 'gbellmf';
fis.Inputs(2).mf(j).Params = [(j-1)/(nMF-1),1,10];
end
% Output
fis.Outputs(1).Name = 'q';
fis.Outputs(1).Range = [-1 1];
for j = 1:nOut
fis.Outputs(1).mf(j).Name = ['q',num2str(j)];
fis.Outputs(1).mf(j).Type = 'linear';
fis.Outputs(1).mf(j).Params = [1 0];
end
% Training data
x = rand(100,2);
y = rand(100,1);
% Train FIS
fis = anfis([x y],fis,[100 0 0.01 0.9]);
end
% Output
sys = [];
%---------------------------------------------------------------
function sys = mdlOutputs(t,x,u)
% Parameters
alpha = 0.01; % Learning rate
gamma = 0.9; % Discount factor
nFIS = 3; % Number of fuzzy inference systems
nMF = 3; % Number of membership functions
nOut = 1; % Number of outputs
% Inputs
state = u(1); % State
act = u(2); % Action
% Fuzzy inference systems
for i = 1:nFIS
% Initialize FIS
fis = mamfis('NumInputs',2,'NumOutputs',nOut,'NumMFs',nMF);
% Input 1: State
fis.Inputs(1).Name = 'state';
fis.Inputs(1).Range = [0 1];
for j = 1:nMF
fis.Inputs(1).mf(j).Name = ['state',num2str(j)];
fis.Inputs(1).mf(j).Type = 'gbellmf';
fis.Inputs(1).mf(j).Params = [(j-1)/(nMF-1),1,10];
end
% Input 2: Action
fis.Inputs(2).Name = 'action';
fis.Inputs(2).Range = [0 1];
for j = 1:nMF
fis.Inputs(2).mf(j).Name = ['action',num2str(j)];
fis.Inputs(2).mf(j).Type = 'gbellmf';
fis.Inputs(2).mf(j).Params = [(j-1)/(nMF-1),1,10];
end
% Output
fis.Outputs(1).Name = 'q';
fis.Outputs(1).Range = [-1 1];
for j = 1:nOut
fis.Outputs(1).mf(j).Name = ['q',num2str(j)];
fis.Outputs(1).mf(j).Type = 'linear';
fis.Outputs(1).mf(j).Params = [1 0];
end
% Training data
x = rand(100,2);
y = rand(100,1);
% Train FIS
fis = anfis([x y],fis,[100 0 0.01 0.9]);
% Evaluate FIS
q = evalfis([state act],fis);
% Update Q-values
% ...
end
% Output
sys = q;
```
请注意,此代码示例仅用于说明如何在Matlab中使用S-Function实现模糊神经网络。您需要根据自己的需求进行修改和定制。
阅读全文