使用spark java类实现一个基于随机梯度下降算法的线性回归,不可以使用mllib包,其中输入数据是JavaRDD<Data> data类型,data中包含double list类型的x和double类型的y。实现两个函数,主函数public double[] iteration(JavaRDD<Data> data, int dimension, int epoch, double threshold)控制整个过程,其中data为输入数据,javaRDD<Data>类型,其中包括double []x和y,主方法中调用public double[] runStep(JavaRDD<Data> data, double[] weight, long count)实现每一轮的随机梯度下降

时间: 2024-02-28 13:52:02 浏览: 24
好的,以下是基于随机梯度下降算法的线性回归的实现代码,使用了Spark的Java API: ```java import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.function.Function; import java.util.Random; public class LinearRegressionSGD { private static final Random random = new Random(); // 主函数,控制整个过程 public double[] iteration(JavaRDD<Data> data, int dimension, int epoch, double threshold) { double[] weight = new double[dimension + 1]; long count = data.count(); double[] gradient = new double[dimension + 1]; for (int i = 0; i < epoch; i++) { weight = runStep(data, weight, count); gradient = computeGradient(data, weight, count); // 判断梯度是否小于阈值 double norm = euclideanNorm(gradient); if (norm < threshold) { System.out.println("Converged after " + i + " iterations"); break; } } return weight; } // 每一轮的随机梯度下降 public double[] runStep(JavaRDD<Data> data, double[] weight, long count) { double[] newWeight = new double[weight.length]; // 遍历每个数据点 data.foreach((Function<Data, Void>) datum -> { double[] x = datum.getX(); double y = datum.getY(); double prediction = dotProduct(x, weight); double error = prediction - y; // 更新权重 for (int i = 0; i < x.length; i++) { newWeight[i] = weight[i] - error * x[i] / count; } newWeight[newWeight.length - 1] = weight[newWeight.length - 1] - error / count; return null; }); return newWeight; } // 计算梯度 public double[] computeGradient(JavaRDD<Data> data, double[] weight, long count) { double[] gradient = new double[weight.length]; // 遍历每个数据点 data.foreach((Function<Data, Void>) datum -> { double[] x = datum.getX(); double y = datum.getY(); double prediction = dotProduct(x, weight); double error = prediction - y; // 累加梯度 for (int i = 0; i < x.length; i++) { gradient[i] += error * x[i] / count; } gradient[gradient.length - 1] += error / count; return null; }); return gradient; } // 计算点积 private double dotProduct(double[] a, double[] b) { double result = 0.0; for (int i = 0; i < a.length; i++) { result += a[i] * b[i]; } return result; } // 计算欧几里得范数 private double euclideanNorm(double[] a) { double sum = 0.0; for (double value : a) { sum += value * value; } return Math.sqrt(sum); } // 数据类 public static class Data { private double[] x; private double y; public Data(double[] x, double y) { this.x = x; this.y = y; } public double[] getX() { return x; } public double getY() { return y; } } } ``` 其中,主函数 `iteration` 控制整个过程。每一轮的随机梯度下降通过函数 `runStep` 实现,计算梯度通过函数 `computeGradient` 实现。在计算梯度时,我们遍历每个数据点并累加梯度,最后返回梯度向量。在每一轮的随机梯度下降中,我们遍历每个数据点并更新权重。在更新权重时,我们计算每个数据点对于权重的贡献,并累加更新权重,最后返回新的权重向量。对于计算点积和欧几里得范数的函数,我们使用了简单的循环实现。

相关推荐

最新推荐

recommend-type

使用Spark MLlib给豆瓣用户推荐电影.doc

完整项目链,机器学习到用户推荐,实现精准营销! ALS算法 LS是alternating least squares的缩写 , 意...在这个矩阵分解的过程中,评分缺失项得到了填充,也就是说我们可以基于这个填充的评分来给用户最商品推荐了。
recommend-type

Spark随机森林实现票房预测

主要为大家详细介绍了Spark随机森林实现票房预测,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
recommend-type

详解Java编写并运行spark应用程序的方法

主要介绍了详解Java编写并运行spark应用程序的方法,内容详细,结合了作者实际工作中的问题进行具体分析,具有一定参考价值。
recommend-type

java大数据作业_5Mapreduce、数据挖掘

课后作业 1.请找出日志中的访问者ip,访问时间,来源地址,访问 ...有输入数据如下所示: 1 2 2 3 2 1 4 6 3 1 3 8 3 2 需要使用二次排序算法,得到如下处理结果: 1 2 2 1 2 3 3 1 3 2 3 8 4 6 请简述处理过程
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

hive中 的Metastore

Hive中的Metastore是一个关键的组件,它用于存储和管理Hive中的元数据。这些元数据包括表名、列名、表的数据类型、分区信息、表的存储位置等信息。Hive的查询和分析都需要Metastore来管理和访问这些元数据。 Metastore可以使用不同的后端存储来存储元数据,例如MySQL、PostgreSQL、Oracle等关系型数据库,或者Hadoop分布式文件系统中的HDFS。Metastore还提供了API,使得开发人员可以通过编程方式访问元数据。 Metastore的另一个重要功能是跟踪表的版本和历史。当用户对表进行更改时,Metastore会记录这些更改,并且可以让用户回滚到
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依