attention lstm代码实现
时间: 2023-04-10 14:02:43 浏览: 116
以下是一个简单的 Attention LSTM 的代码实现:
```python
import torch
import torch.nn as nn
class AttentionLSTM(nn.Module):
def __init__(self, input_size, hidden_size, num_layers):
super(AttentionLSTM, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, 1)
def forward(self, x):
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
out, _ = self.lstm(x, (h0, c0))
out = out[:, -1, :]
out = self.fc(out)
out = torch.sigmoid(out)
out = out.unsqueeze(1)
attn_weights = torch.bmm(out, x)
attn_weights = torch.softmax(attn_weights, dim=1)
out = torch.bmm(attn_weights, out)
return out
```
希望这个代码能够帮到你!
阅读全文