attention lstm tensorflow代码实现
时间: 2023-04-10 07:02:43 浏览: 238
以下是一个基于 TensorFlow 的 Attention LSTM 的代码实现:
```python
import tensorflow as tf
class AttentionLSTM(tf.keras.Model):
def __init__(self, hidden_size, attention_size):
super(AttentionLSTM, self).__init__()
self.hidden_size = hidden_size
self.attention_size = attention_size
self.lstm_cell = tf.keras.layers.LSTMCell(hidden_size)
self.attention_layer = tf.keras.layers.Dense(attention_size, activation='tanh')
self.output_layer = tf.keras.layers.Dense(1, activation='sigmoid')
def call(self, inputs, states):
x, context = inputs
h, c = states
# Compute attention weights
attention = self.attention_layer(tf.concat([h, context], axis=-1))
attention = self.output_layer(attention)
attention_weights = tf.nn.softmax(attention, axis=1)
# Compute context vector
context_vector = tf.reduce_sum(tf.multiply(context, attention_weights), axis=1)
# Compute LSTM output
lstm_input = tf.concat([x, context_vector], axis=-1)
h, c = self.lstm_cell(lstm_input, (h, c))
return h, c
def get_initial_state(self, inputs=None, batch_size=None, dtype=None):
return self.lstm_cell.get_initial_state(inputs=inputs, batch_size=batch_size, dtype=dtype)
```
希望这个代码能够帮到你!
阅读全文