X_train = X_train.astype(str)X_test = X_test.astype(str)写在哪里
时间: 2023-06-20 17:06:56 浏览: 103
这行代码是将训练集和测试集中的数据类型转换为字符串类型,一般情况下应该在数据预处理的阶段进行,具体位置取决于你的代码实现。如果你在使用sklearn等机器学习库时,可以在读取数据后进行类型转换。例如:
```
import pandas as pd
from sklearn.model_selection import train_test_split
# 读取数据
data = pd.read_csv('data.csv')
# 分割数据集
X_train, X_test, y_train, y_test = train_test_split(data.iloc[:, :-1], data.iloc[:, -1], test_size=0.2, random_state=42)
# 将数据类型转换为字符串类型
X_train = X_train.astype(str)
X_test = X_test.astype(str)
```
在这个例子中,类型转换是在分割数据集后进行的。
相关问题
import gzip import os import pickle import numpy as np def load_mnist(path, kind='train'): labels_path = os.path.join(path, '%s-labels-idx1-ubyte.gz' % kind) images_path = os.path.join(path, '%s-images-idx3-ubyte.gz' % kind) with gzip.open(labels_path, 'rb') as lbpath: labels = np.frombuffer(lbpath.read(), dtype=np.uint8, offset=8) with gzip.open(images_path, 'rb') as imgpath: images = np.frombuffer(imgpath.read(), dtype=np.uint8, offset=16).reshape(len(labels), 784) return images, labels def get_mnist_data(num_training=5000, num_validation=500, num_test=500): mnist_dir = r'D:\daima\mnist' # 修改为mnist数据集所在的目录 X_train, y_train = load_mnist(mnist_dir, kind='train') X_test, y_test = load_mnist(mnist_dir, kind='t10k') print(X_train.shape) mask = range(num_training, num_training + num_validation) X_val = X_train[mask] y_val = y_train[mask] mask = range(num_training) X_train = X_train[mask] y_train = y_train[mask] mask = range(num_test) X_test = X_test[mask] y_test = y_test[mask] X_train = X_train.astype('float32') / 255 X_val = X_val.astype('float32') / 255 X_test = X_test.astype('float32') / 255 return X_train, y_train, X_val, y_val, X_test, y_testTypeError: tuple indices must be integers or slices, not str
这段代码出现了一个错误:TypeError: tuple indices must be integers or slices, not str。这是因为在load_mnist函数中返回的是一个元组类型的变量(images, labels),而在get_mnist_data函数中却使用了类似字典的方式访问这个元组变量,如X_train, y_train = load_mnist(mnist_dir, kind='train'),应该改为X_train, y_train = load_mnist(mnist_dir, kind=0),X_test, y_test = load_mnist(mnist_dir, kind=1),这样就能够正确访问这个元组变量的元素了。
from gensim.models import word2vec model = word2vec.Word2Vec.load('C:\\Users\\86157\\Desktop\\Course\\AI\\model_300dim.pkl') from mol2vec.features import mol2alt_sentence,mol2sentence, MolSentence ,DfVec, sentences2vec data['sentence'] = data.apply(lambda x:MolSentence(mol2alt_sentence(x['mol'],1)),axis =1) data['mol2vec'] = [DfVec(x) for x in sentences2vec(data['sentence'], model, unseen='UNK')] X_mol = np.array([x.vec for x in data['mol2vec']]) X_mol = pd.DataFrame(X_mol) X_mol.columns = X_mol.columns.astype(str) new_data = pd.concat((X,X_mol),axis = 1) x_train,x_test,y_train,y_test = train_test_split(new_data,y ,test_size=.20 ,random_state = 1) x_train = StandardScaler().fit_transform(x_train) x_test = StandardScaler().fit_transform(x_test) lr = LogisticRegression(max_iter=10000) lr.fit(x_train,y_train) evaluation_class(lr,x_test,y_test) rf=RandomForestClassifier(max_depth=4,random_state=0) rf.fit(x_train,y_train) evaluation_class(rf,x_test,y_test) sm = svm.SVC(gamma='scale',C=1.0,decision_function_shape='ovr',kernel='rbf',probability=True) sm.fit(x_train,y_train) evaluation_class(sm,x_test,y_test)
这段代码是在使用mol2vec方法提取药物分子的特征,并将提取的特征与之前使用的化学描述符特征进行合并,然后使用LogisticRegression、RandomForestClassifier和SVM三种模型进行药物筛选预测。其中,使用了word2vec模型对分子进行编码,得到分子的mol2vec特征,将其与之前提取的化学描述符特征进行合并,并使用ROC曲线和AUC值进行模型性能评估。请问你还有什么问题需要我解答吗?
阅读全文
相关推荐












