用keras搭建一个使用交叉注意力机制的卷积神经网络进行图像分类python代码
时间: 2023-07-27 09:07:24 浏览: 87
好的,以下是一个使用交叉注意力机制的卷积神经网络进行图像分类的Keras代码:
```python
from keras.models import Model
from keras.layers import Input, Conv2D, MaxPooling2D, GlobalMaxPooling2D, Dropout, Dense, Concatenate
from keras.layers import multiply, Reshape, UpSampling2D, Activation, Lambda, Subtract
def squeeze_excite_block(input):
# 获取输入张量的形状
filters = input._keras_shape[-1]
# 定义压缩因子
se_ratio = 16
x = GlobalMaxPooling2D()(input)
x = Dense(filters//se_ratio, activation='relu')(x)
x = Dense(filters, activation='sigmoid')(x)
return multiply([input, x])
def spatial_attention(input):
# 获取输入张量的形状
filters = input._keras_shape[-1]
x = Conv2D(filters//8, kernel_size=1, activation='relu')(input)
x = Conv2D(filters//8, kernel_size=3, padding='same', activation='relu')(x)
x = Conv2D(filters, kernel_size=1, activation='sigmoid')(x)
return multiply([input, x])
def channel_attention(input):
# 获取输入张量的形状
filters = input._keras_shape[-1]
avg_pool = GlobalMaxPooling2D()(input)
max_pool = GlobalMaxPooling2D()(input)
x = Concatenate()([avg_pool, max_pool])
x = Dense(filters//8, activation='relu')(x)
x = Dense(filters, activation='sigmoid')(x)
x = Reshape((1, 1, filters))(x)
return multiply([input, x])
def cross_attention(input):
# 获取输入张量的形状
filters = input._keras_shape[-1]
# 计算空间注意力和通道注意力
sa = spatial_attention(input)
ca = channel_attention(input)
# 计算交叉注意力
x = Concatenate()([sa, ca])
x = Conv2D(filters, kernel_size=1, activation='sigmoid')(x)
# 与原始输入相乘
return multiply([input, x])
def build_model(input_shape, num_classes):
# 定义输入张量
input = Input(shape=input_shape)
# 第一个卷积层
x = Conv2D(32, kernel_size=3, padding='same', activation='relu')(input)
x = cross_attention(x)
x = squeeze_excite_block(x)
x = MaxPooling2D(pool_size=(2, 2))(x)
# 第二个卷积层
x = Conv2D(64, kernel_size=3, padding='same', activation='relu')(x)
x = cross_attention(x)
x = squeeze_excite_block(x)
x = MaxPooling2D(pool_size=(2, 2))(x)
# 第三个卷积层
x = Conv2D(128, kernel_size=3, padding='same', activation='relu')(x)
x = cross_attention(x)
x = squeeze_excite_block(x)
x = MaxPooling2D(pool_size=(2, 2))(x)
# 全局最大池化层
x = GlobalMaxPooling2D()(x)
# 全连接层
x = Dense(512, activation='relu')(x)
x = Dropout(0.5)(x)
# 输出层
output = Dense(num_classes, activation='softmax')(x)
# 定义模型
model = Model(inputs=input, outputs=output)
return model
```
这个模型使用了交叉注意力机制,同时也包含了通道注意力和空间注意力。注意力机制可以帮助模型更好地关注重要的特征信息,从而提高模型的性能。
阅读全文