matlab linprog函数的用法
时间: 2024-09-24 09:20:20 浏览: 78
Matlab 的 `linprog` 函数用于解决线性规划问题,它可以帮助你在给定约束条件下找到某个线性目标函数的最大值或最小值。这个函数的基本语法如下:
```matlab
[x, fval, exitflag, output] = linprog(f, A, b, Aeq, beq, lb, ub, options)
```
参数说明:
1. `f` - 目标系数向量,表示线性目标函数 c^T * x。
2. `A` - 线性不等式约束矩阵,每一行对应一个不等式,如果为零矩阵则表示无约束。
3. `b` - 线性不等式的右侧常数向量。
4. `Aeq` - 线性等式约束矩阵,如果不存在则设置为零矩阵。
5. `beq` - 线性等式的右侧常数向量。
6. `lb` - 下界向量,定义变量的最小值。
7. `ub` - 上界向量,定义变量的最大值。
8. `options` - 可选的选项结构,包含算法参数和显示选项。
返回结果:
- `x` - 最优解向量。
- `fval` - 最小化的目标函数值(最小化问题),或最大化的目标函数值(最大化问题)。
- `exitflag` - 返回一个整数,指示求解过程的状态。
- `output` - 包含了更多的信息,如迭代次数、步长等。
例子:
```matlab
% 示例:求解最小化 c = [1; 2]' * x,使得 x >= 0,且满足 Ax <= b
c = [1; 2];
A = [];
b = [3; 4];
lb = zeros(size(c)); % 默认下界是0
[x, fval, exitflag, output] = linprog(-c, A, b, [], [], lb, []);
```
阅读全文
相关推荐


















