python ogg chunks

时间: 2024-08-12 17:04:13 浏览: 109
Python 中的 Ogg 文件是一种基于 vorbis 或 theora 等编码的开放音频和视频流文件格式。"Chunks"在Ogg文件中通常指的是数据块(segments),它们构成了ogg文件的基本存储单元。每个chunk包含了特定的数据类型信息,如音频帧、视频帧或者是元数据等。 Ogg文件的chunk结构是自描述的,这意味着它包含了一个小头(metadata header),用于标识chunk类型、大小以及紧随其后的实际数据。Ogg Vorbis 数据流就是一个典型的例子,每个chunk开始时有四个字节的小头,包括'0x4f', '0x67', '0x67', '0x20'('OggS' in ASCII),表示这是一个Ogg流。 在处理Python中的Ogg文件时,比如使用`pyogg`库,你可以通过读取或写入这些chunks来操作音频或视频内容。例如,读取chunk可以得到特定时间点的音频样本,而写入chunk则可以添加新的音频数据到文件中。
相关问题

python中的chunks

在Python中,`chunks`通常是指将一个序列分割成一系列较小的、固定长度的部分,这个功能常用在处理大量数据时,比如并行处理或分批读取文件等场景。`itertools`模块中的`tee()`函数可以用于实现类似的功能,但如果没有内置的`chunks`函数,我们可以自定义一个: ```python from itertools import islice def chunks(iterable, size): """Splits an iterable into fixed-length chunks.""" iterator = iter(iterable) while True: chunk = tuple(islice(iterator, size)) if not chunk: break yield chunk # 使用示例 numbers = [1, 2, 3, 4, 5, 6] for chunk in chunks(numbers, 3): print(chunk) ``` 这会返回一个生成器,每次迭代生成一个包含指定元素数的元组。如果序列长度不是chunk大小的整数倍,最后一个chunk可能会小于指定大小。

python 修改.mat的chunks

### 回答1: 可以使用`h5py`库来修改`.mat`文件的chunks。这里提供一个修改`.mat`文件chunks的示例代码: ```python import h5py # 打开.mat文件 with h5py.File('filename.mat', 'r+') as f: # 获取需要修改的数据集 dset = f['dset_name'] # 修改chunks参数 dset.chunks = (new_chunk_size,) # 关闭文件 f.close() ``` 上述代码中,`filename.mat`为需要修改的`.mat`文件名,`dset_name`为需要修改的数据集名,`new_chunk_size`为修改后的chunk大小。注意,需要以读写模式打开文件,即`'r+'`模式。 ### 回答2: 在Python中修改.mat文件的chunks(分块)需要使用SciPy库中的io模块。Matlab的.mat文件存储了多维数组和结构化数据,chunks是指在存储.mat文件时将其分割成较小的块,以提高读写性能。 首先,我们需要导入必要的库和模块: ```python import scipy.io as spio ``` 然后,我们可以通过使用`spio.loadmat()`函数来加载.mat文件: ```python mat_data = spio.loadmat('filename.mat') ``` 加载.mat文件后,我们可以通过`spio.whosmat()`函数来查看.mat文件中的变量及其属性。我们可以找到我们想要修改chunks的变量并将其加载到内存中: ```python var_data = mat_data['variable_name'] ``` 这里的'variable_name'是你想要修改chunks的变量的名称。 接下来,我们可以使用`spio.savemat()`函数重新保存.mat文件,并指定新的chunks大小: ```python spio.savemat('new_filename.mat', {'new_variable_name': var_data}, do_compression=True, format='5', long_field_names=True, appendmat=False, chunksizes=(new_chunk_size, None)) ``` 这里的'new_variable_name'是你想要保存的变量的新名称,new_chunk_size是你想要指定的新的chunks大小。 注意,在保存.mat文件时,我们可以选择是否使用数据压缩(`do_compression=True`),选择格式(`format='5'`),选择长字段名称(`long_field_names=True`),选择是否附加.mat扩展名(`appendmat=False`)。 以上是使用Python修改.mat文件的chunks的基本步骤。但需要根据具体的.mat文件和chunks的需求进行适当的调整。 ### 回答3: Python中可以使用scipy库来处理.mat文件,通过scipy库的io模块可以读取.mat文件。 首先要安装scipy库,可以使用pip命令进行安装: ``` pip install scipy ``` 然后,在Python代码中导入scipy库的io模块: ``` from scipy import io ``` 使用io.loadmat()函数可以读取.mat文件的内容,并将其存储在一个字典对象中,例如: ``` data = io.loadmat('filename.mat') ``` 其中,'filename.mat'是要读取的.mat文件的文件名。 通过查看data字典对象,可以找到文件中的变量和数据。如果需要修改.mat文件中的chunks,可以直接对data中的相应变量进行修改,然后使用io.savemat()函数将修改后的内容保存回.mat文件。 具体的修改过程需要根据.mat文件的内容和需求来决定,下面以修改.mat文件中的一个名为'chunk'的变量为例: ``` data['chunk'] = new_chunk_value io.savemat('filename.mat', data) ``` 其中,'new_chunk_value'是要修改为的新值,'filename.mat'是要保存修改后内容的.mat文件的文件名。 以上就是使用Python修改.mat文件的chunks的方法。需要注意的是,修改.mat文件时要确保文件的格式正确性,以避免数据丢失或损坏。
阅读全文

相关推荐

Traceback (most recent call last): File "D:/PyCharm 2021/新建文件夹/数据转成可视化.py", line 105, in <module> map_1.render("全国疫情分布图.html") File "C:\Users\Administrator\AppData\Local\Programs\Python\Python38\lib\site-packages\pyecharts\charts\base.py", line 92, in render self._prepare_render() File "C:\Users\Administrator\AppData\Local\Programs\Python\Python38\lib\site-packages\pyecharts\charts\base.py", line 116, in _prepare_render self.json_contents = self.dump_options() File "C:\Users\Administrator\AppData\Local\Programs\Python\Python38\lib\site-packages\pyecharts\charts\base.py", line 77, in dump_options json.dumps(self.get_options(), indent=4, default=default, ignore_nan=True) File "C:\Users\Administrator\AppData\Local\Programs\Python\Python38\lib\site-packages\simplejson\__init__.py", line 381, in dumps return cls( File "C:\Users\Administrator\AppData\Local\Programs\Python\Python38\lib\site-packages\simplejson\encoder.py", line 300, in encode chunks = list(chunks) File "C:\Users\Administrator\AppData\Local\Programs\Python\Python38\lib\site-packages\simplejson\encoder.py", line 714, in _iterencode for chunk in _iterencode_dict(o, _current_indent_level): File "C:\Users\Administrator\AppData\Local\Programs\Python\Python38\lib\site-packages\simplejson\encoder.py", line 668, in _iterencode_dict for chunk in chunks: File "C:\Users\Administrator\AppData\Local\Programs\Python\Python38\lib\site-packages\simplejson\encoder.py", line 735, in _iterencode for chunk in _iterencode(o, _current_indent_level): File "C:\Users\Administrator\AppData\Local\Programs\Python\Python38\lib\site-packages\simplejson\encoder.py", line 714, in _iterencode for chunk in _iterencode_dict(o, _current_indent_level): File "C:\Users\Administrator\AppData\Local\Programs\Python\Python38\lib\site-packages\simplejson\encoder.py", line 668, in _iterencode_dict for chunk in chunks: File "C:\Users\Administrator\AppData\Local\Programs\Python\Python38\lib\site-packages\simplejson\encoder.py", line 544, in _iterencode_list for chunk in chunks: File "C:\Users\Administrator\AppData\Local\Programs\Python\Python38\lib\site-packages\simplejson\encoder.py", line 620, in _iterencode_dict key = _stringify_key(key) File "C:\Users\Administrator\AppData\Local\Programs\Python\Python38\lib\site-packages\simplejson\encoder.py", line 580, in _stringify_key raise TypeError('keys must be str, int, float, bool or None, ' TypeError: keys must be str, int, float, bool or None, not builtin_function_or_method

报错如下: Traceback (most recent call last): File "/usr/local/lib64/python3.6/site-packages/flask/app.py", line 2091, in __call__ return self.wsgi_app(environ, start_response) File "/usr/local/lib64/python3.6/site-packages/flask/app.py", line 2076, in wsgi_app response = self.handle_exception(e) File "/usr/local/lib64/python3.6/site-packages/flask/app.py", line 2073, in wsgi_app response = self.full_dispatch_request() File "/usr/local/lib64/python3.6/site-packages/flask/app.py", line 1518, in full_dispatch_request rv = self.handle_user_exception(e) File "/usr/local/lib64/python3.6/site-packages/flask/app.py", line 1516, in full_dispatch_request rv = self.dispatch_request() File "/usr/local/lib64/python3.6/site-packages/flask/app.py", line 1502, in dispatch_request return self.ensure_sync(self.view_functions[rule.endpoint])(**req.view_args) File "/temp/py/app-07240001.py", line 16, in display_yaml return render_template('index.html', highlighted_data=highlighted_data, css=css) File "/usr/local/lib64/python3.6/site-packages/flask/templating.py", line 150, in render_template ctx.app, File "/usr/local/lib64/python3.6/site-packages/flask/templating.py", line 128, in _render rv = template.render(context) File "/usr/local/lib/python3.6/site-packages/jinja2/environment.py", line 1291, in render self.environment.handle_exception() File "/usr/local/lib/python3.6/site-packages/jinja2/environment.py", line 925, in handle_exception raise rewrite_traceback_stack(source=source) File "/temp/py/templates/index.html", line 16, in top-level template code var originalData = {{ data|tojson|safe }}; File "/usr/local/lib/python3.6/site-packages/jinja2/filters.py", line 1673, in do_tojson return htmlsafe_json_dumps(value, dumps=dumps, **kwargs) File "/usr/local/lib/python3.6/site-packages/jinja2/utils.py", line 736, in htmlsafe_json_dumps dumps(obj, **kwargs) File "/usr/local/lib64/python3.6/site-packages/flask/json/__init__.py", line 139, in dumps rv = _json.dumps(obj, **kwargs) File "/usr/lib64/python3.6/json/__init__.py", line 238, in dumps **kw).encode(obj) File "/usr/lib64/python3.6/json/encoder.py", line 199, in encode chunks = self.iterencode(o, _one_shot=True) File "/usr/lib64/python3.6/json/encoder.py", line 257, in iterencode return _iterencode(o, 0) File "/usr/local/lib64/python3.6/site-packages/flask/json/__init__.py", line 57, in default return super().default(o) File "/usr/lib64/python3.6/json/encoder.py", line 180, in default o.__class__.__name__) TypeError: Object of type 'Undefined' is not JSON serializable

最新推荐

recommend-type

基于Springboot的实验报告系统源码数据库文档.zip

基于Springboot的实验报告系统源码数据库文档.zip
recommend-type

ERA5_Climate_Single_Month.txt

GEE训练教程——Landsat5、8和Sentinel-2、DEM和各2哦想指数下载
recommend-type

基于springboot智能健康饮食系统源码数据库文档.zip

基于springboot智能健康饮食系统源码数据库文档.zip
recommend-type

基于SpringBoot的校园服务系统源码数据库文档.zip

基于SpringBoot的校园服务系统源码数据库文档.zip
recommend-type

全国江河水系图层shp文件包下载

资源摘要信息:"国内各个江河水系图层shp文件.zip" 地理信息系统(GIS)是管理和分析地球表面与空间和地理分布相关的数据的一门技术。GIS通过整合、存储、编辑、分析、共享和显示地理信息来支持决策过程。在GIS中,矢量数据是一种常见的数据格式,它可以精确表示现实世界中的各种空间特征,包括点、线和多边形。这些空间特征可以用来表示河流、道路、建筑物等地理对象。 本压缩包中包含了国内各个江河水系图层的数据文件,这些图层是以shapefile(shp)格式存在的,是一种广泛使用的GIS矢量数据格式。shapefile格式由多个文件组成,包括主文件(.shp)、索引文件(.shx)、属性表文件(.dbf)等。每个文件都存储着不同的信息,例如.shp文件存储着地理要素的形状和位置,.dbf文件存储着与这些要素相关的属性信息。本压缩包内还包含了图层文件(.lyr),这是一个特殊的文件格式,它用于保存图层的样式和属性设置,便于在GIS软件中快速重用和配置图层。 文件名称列表中出现的.dbf文件包括五级河流.dbf、湖泊.dbf、四级河流.dbf、双线河.dbf、三级河流.dbf、一级河流.dbf、二级河流.dbf。这些文件中包含了各个水系的属性信息,如河流名称、长度、流域面积、流量等。这些数据对于水文研究、环境监测、城市规划和灾害管理等领域具有重要的应用价值。 而.lyr文件则包括四级河流.lyr、五级河流.lyr、三级河流.lyr,这些文件定义了对应的河流图层如何在GIS软件中显示,包括颜色、线型、符号等视觉样式。这使得用户可以直观地看到河流的层级和特征,有助于快速识别和分析不同的河流。 值得注意的是,河流按照流量、流域面积或长度等特征,可以被划分为不同的等级,如一级河流、二级河流、三级河流、四级河流以及五级河流。这些等级的划分依据了水文学和地理学的标准,反映了河流的规模和重要性。一级河流通常指的是流域面积广、流量大的主要河流;而五级河流则是较小的支流。在GIS数据中区分河流等级有助于进行水资源管理和防洪规划。 总而言之,这个压缩包提供的.shp文件为我们分析和可视化国内的江河水系提供了宝贵的地理信息资源。通过这些数据,研究人员和规划者可以更好地理解水资源分布,为保护水资源、制定防洪措施、优化水资源配置等工作提供科学依据。同时,这些数据还可以用于教育、科研和公共信息服务等领域,以帮助公众更好地了解我国的自然地理环境。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Keras模型压缩与优化:减小模型尺寸与提升推理速度

![Keras模型压缩与优化:减小模型尺寸与提升推理速度](https://dvl.in.tum.de/img/lectures/automl.png) # 1. Keras模型压缩与优化概览 随着深度学习技术的飞速发展,模型的规模和复杂度日益增加,这给部署带来了挑战。模型压缩和优化技术应运而生,旨在减少模型大小和计算资源消耗,同时保持或提高性能。Keras作为流行的高级神经网络API,因其易用性和灵活性,在模型优化领域中占据了重要位置。本章将概述Keras在模型压缩与优化方面的应用,为后续章节深入探讨相关技术奠定基础。 # 2. 理论基础与模型压缩技术 ### 2.1 神经网络模型压缩
recommend-type

MTK 6229 BB芯片在手机中有哪些核心功能,OTG支持、Wi-Fi支持和RTC晶振是如何实现的?

MTK 6229 BB芯片作为MTK手机的核心处理器,其核心功能包括提供高速的数据处理、支持EDGE网络以及集成多个通信接口。它集成了DSP单元,能够处理高速的数据传输和复杂的信号处理任务,满足手机的多媒体功能需求。 参考资源链接:[MTK手机外围电路详解:BB芯片、功能特性和干扰滤波](https://wenku.csdn.net/doc/64af8b158799832548eeae7c?spm=1055.2569.3001.10343) OTG(On-The-Go)支持是通过芯片内部集成功能实现的,允许MTK手机作为USB Host与各种USB设备直接连接,例如,连接相机、键盘、鼠标等
recommend-type

点云二值化测试数据集的详细解读

资源摘要信息:"点云二值化测试数据" 知识点: 一、点云基础知识 1. 点云定义:点云是由点的集合构成的数据集,这些点表示物体表面的空间位置信息,通常由三维扫描仪或激光雷达(LiDAR)生成。 2. 点云特性:点云数据通常具有稠密性和不规则性,每个点可能包含三维坐标(x, y, z)和额外信息如颜色、反射率等。 3. 点云应用:广泛应用于计算机视觉、自动驾驶、机器人导航、三维重建、虚拟现实等领域。 二、二值化处理概述 1. 二值化定义:二值化处理是将图像或点云数据中的像素或点的灰度值转换为0或1的过程,即黑白两色表示。在点云数据中,二值化通常指将点云的密度或强度信息转换为二元形式。 2. 二值化的目的:简化数据处理,便于后续的图像分析、特征提取、分割等操作。 3. 二值化方法:点云的二值化可能基于局部密度、强度、距离或其他用户定义的标准。 三、点云二值化技术 1. 密度阈值方法:通过设定一个密度阈值,将高于该阈值的点分类为前景,低于阈值的点归为背景。 2. 距离阈值方法:根据点到某一参考点或点云中心的距离来决定点的二值化,距离小于某个值的点为前景,大于的为背景。 3. 混合方法:结合密度、距离或其他特征,通过更复杂的算法来确定点的二值化。 四、二值化测试数据的处理流程 1. 数据收集:使用相应的设备和技术收集点云数据。 2. 数据预处理:包括去噪、归一化、数据对齐等步骤,为二值化处理做准备。 3. 二值化:应用上述方法,对预处理后的点云数据执行二值化操作。 4. 测试与验证:采用适当的评估标准和测试集来验证二值化效果的准确性和可靠性。 5. 结果分析:通过比较二值化前后点云数据的差异,分析二值化效果是否达到预期目标。 五、测试数据集的结构与组成 1. 测试数据集格式:文件可能以常见的点云格式存储,如PLY、PCD、TXT等。 2. 数据集内容:包含了用于测试二值化算法性能的点云样本。 3. 数据集数量和多样性:根据实际应用场景,测试数据集应该包含不同类型、不同场景下的点云数据。 六、相关软件工具和技术 1. 点云处理软件:如CloudCompare、PCL(Point Cloud Library)、MATLAB等。 2. 二值化算法实现:可能涉及图像处理库或专门的点云处理算法。 3. 评估指标:用于衡量二值化效果的指标,例如分类的准确性、召回率、F1分数等。 七、应用场景分析 1. 自动驾驶:在自动驾驶领域,点云二值化可用于道路障碍物检测和分割。 2. 三维重建:在三维建模中,二值化有助于提取物体表面并简化模型复杂度。 3. 工业检测:在工业检测中,二值化可以用来识别产品缺陷或确保产品质量标准。 综上所述,点云二值化测试数据的处理是一个涉及数据收集、预处理、二值化算法应用、效果评估等多个环节的复杂过程,对于提升点云数据处理的自动化、智能化水平至关重要。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依