神经网络人脸识别代码 matlab

时间: 2023-09-07 22:11:11 浏览: 21
以下是一个基于 MATLAB 的简单人脸识别代码,使用了卷积神经网络(CNN): ``` %% 加载数据 load('face_data.mat') % face_data.mat 包含训练和测试数据 %% 构建卷积神经网络模型 layers = [ imageInputLayer([32 32 1]) convolution2dLayer(3,16,'Padding','same') batchNormalizationLayer reluLayer maxPooling2dLayer(2,'Stride',2) convolution2dLayer(3,32,'Padding','same') batchNormalizationLayer reluLayer maxPooling2dLayer(2,'Stride',2) convolution2dLayer(3,64,'Padding','same') batchNormalizationLayer reluLayer fullyConnectedLayer(128) reluLayer fullyConnectedLayer(5) softmaxLayer classificationLayer]; %% 设置训练选项 options = trainingOptions('sgdm', ... 'InitialLearnRate',0.01, ... 'MaxEpochs',20, ... 'Shuffle','every-epoch', ... 'ValidationData',test_data, ... 'ValidationFrequency',30, ... 'Verbose',false, ... 'Plots','training-progress'); %% 训练神经网络 net = trainNetwork(train_data,layers,options); %% 测试神经网络 YPred = classify(net,test_data); YTest = test_labels; accuracy = sum(YPred == YTest)/numel(YTest) ``` 其中,`face_data.mat` 包含了训练和测试数据,`train_data` 和 `test_data` 分别是大小为 32x32 的图像数据,`train_labels` 和 `test_labels` 分别是训练和测试数据的标签。这个例子使用了一个简单的 CNN 模型,包含了卷积层、池化层、全连接层和 softmax 分类层。`trainingOptions` 函数设置了训练选项,包括优化算法、初始学习率、最大训练轮数等。最后,训练得到的神经网络使用测试数据进行测试,输出了分类准确率。

相关推荐

卷积神经网络(Convolutional Neural Network)是一类经典的深度学习网络,被广泛应用于图像处理领域。在人脸识别方面,卷积神经网络可以通过学习人脸的特征,实现对人脸的准确识别。本文将介绍使用MATLAB实现卷积神经网络人脸识别的代码。 首先,我们需要准备人脸图片数据集,以供训练和测试。数据集可以由多张人脸图片组成,每张图片需要标注对应的人名。使用MATLAB的ImageDatastore函数可以方便地读取图片数据。 其次,我们需要构建卷积神经网络模型。这里可以使用MATLAB的Deep Learning Toolbox提供的卷积神经网络模板进行构建,包括卷积层、池化层、全连接层等。网络模型需要根据具体任务调整层数、节点数等参数。 接着,我们需要对模型进行训练。这可以通过MATLAB的trainNetwork函数实现,可以选择不同的优化器、损失函数和学习率等参数。训练完成后,可以保存模型用于后续测试。 最后,我们可以使用保存的模型对人脸进行识别。通过读取待识别的人脸图片并输入到模型中,可以得到对应的输出。输出通常是一个向量,每个元素表示对应人名的概率。可以选择输出概率最大的人名作为识别结果,也可以根据阈值进行判定。 综上所述,通过以上步骤可以使用MATLAB实现卷积神经网络人脸识别的代码。这种方法能够有效提高人脸识别的准确性和效率,广泛应用于人脸门禁、刷脸支付等领域。
以下是使用Matlab实现卷积神经网络(CNN)进行人脸图像识别的示例代码: matlab % 加载人脸图像数据集 faceDataset = imageDatastore('path/to/face/dataset', 'IncludeSubfolders', true, 'LabelSource', 'foldernames'); % 定义CNN架构 layers = [ imageInputLayer([32 32 1]) convolution2dLayer(3, 32, 'Padding', 'same') batchNormalizationLayer reluLayer maxPooling2dLayer(2, 'Stride', 2) convolution2dLayer(3, 64, 'Padding', 'same') batchNormalizationLayer reluLayer maxPooling2dLayer(2, 'Stride', 2) fullyConnectedLayer(128) reluLayer dropoutLayer(0.5) fullyConnectedLayer(2) softmaxLayer classificationLayer ]; % 定义训练选项 options = trainingOptions('sgdm', ... 'MaxEpochs', 20, ... 'InitialLearnRate', 0.01, ... 'MiniBatchSize', 32, ... 'Shuffle', 'every-epoch', ... 'ValidationData', faceDatasetValidation, ... 'ValidationFrequency', 10, ... 'Verbose', false, ... 'Plots', 'training-progress'); % 训练CNN faceCNN = trainNetwork(faceDatasetTrain, layers, options); % 测试分类器 faceDatasetTest = imageDatastore('path/to/face/testset', 'IncludeSubfolders', true, 'LabelSource', 'foldernames'); facePred = classify(faceCNN, faceDatasetTest); accuracy = mean(facePred == faceDatasetTest.Labels); fprintf('Accuracy: %f\n', accuracy); 这个例子中,我们首先加载了一个包含人脸图像的数据集。然后定义了一个包含卷积层、批量标准化层、ReLU层、最大池化层、全连接层、dropout层、softmax层和分类层的CNN架构。接着,我们定义了训练选项,包括优化算法、最大迭代次数、学习率、mini-batch大小、验证集和其它参数。最后,我们使用训练数据训练CNN,并使用测试数据测试分类器的准确率。
Matlab是一种很好用的科学计算软件,也支持深度学习和神经网络算法。在人脸识别方面,基于深度学习和神经网络的算法已经成为国内外研究的热点和趋势。而 Matlab 也提供了一些强大的工具箱,如深度学习工具箱、计算机视觉工具箱等,可以实现人脸识别的各种算法。 在 Matlab 中实现人脸识别需要经过以下几个步骤: 1. 数据采集和预处理:从摄像机或视频流中采集人脸数据,然后将其进行预处理,如裁剪、归一化、灰度化等。 2. 特征提取:将预处理后的人脸图像输入到特征提取算法中,如卷积神经网络(CNN)、循环神经网络(RNN)等,以提取人脸的特征向量。这些特征向量具有良好的分类性能,可以作为输入特征用于人脸识别。 3. 分类器训练和测试:将提取到的特征向量与标签进行配对,并将其划分为训练集和测试集。使用常用的分类器,如支持向量机(SVM)、朴素贝叶斯(NB)、K近邻(KNN)等进行训练和测试。 4. 识别:将得到的测试样本输入到已经训练好的分类器中,并与分类器训练集中的特征向量进行比较,最终得到人脸识别结果。 需要注意的是,该过程中需要大量的数据和计算资源,且对于不同情境的人脸识别任务,要选择不同的特征提取和分类算法,并对算法进行优化和调整。 总之,Matlab 深度神经网络人脸识别是一个复杂而又有趣的领域,在未来也将继续受到广泛关注和研究。
对于基于PCA和BP神经网络的人脸识别的MATLAB源代码,我可以给出一个简单的示例。首先,需要准备一个人脸图像数据库,包括多个人脸样本图像。 首先,进行人脸图像的预处理。读取人脸图像,将其转换为灰度图像,并将图像尺寸调整为统一大小。 然后,使用主成分分析(PCA)算法进行人脸特征提取。将所有图像拼接成一个向量矩阵,并进行零均值化处理。计算协方差矩阵,然后使用特征值分解求得特征向量。选择前k个特征向量作为保留的人脸特征,k的选择可以根据经验或其他方法确定。 接下来,使用BP神经网络进行分类和训练。首先,将所有人脸图像的特征向量作为输入,将其对应的人脸ID作为目标输出。然后,构建一个多层的BP神经网络模型,设置输入层、隐藏层和输出层的节点数。使用前向传播和反向传播算法进行网络训练,更新权重和偏置,直到网络收敛或达到预设的迭代次数。 最后,进行人脸识别。读取待识别的人脸图像,进行与先前相同的预处理。将其特征向量输入经过训练的BP神经网络中,得到输出结果。根据最接近的人脸ID进行人脸识别。 这只是一个简单的示例,实际应用中可能需要进行更多的优化和改进。此外,在编写MATLAB源代码时,还需要了解相关函数的使用和参数设置,如PCA、BP神经网络等函数。希望能够对您有所帮助。
人脸识别门禁是通过使用Matlab这一强大的工具,结合人脸识别技术,来实现识别身份并授权进入的系统。该系统首先需要通过摄像头采集用户的人脸图像,然后使用Matlab中的图像处理和计算机视觉算法进行人脸特征提取和分析。接下来,系统将提取到的人脸特征与事先录入的用户信息进行比对,以确定是否识别成功。 在Matlab中,可以使用人脸识别库或自定义算法进行人脸识别。这些算法包括基于主成分分析(PCA)、线性判别分析(LDA)和人工神经网络(ANN)等。通过选择适当的算法和调整参数,可以提高识别的准确性和鲁棒性。 在实现人脸识别门禁系统时,需要考虑到以下几个方面。 首先是摄像头的选取和设置,要选择能够清晰采集到人脸图像的高质量摄像头,同时调整摄像头参数以适应不同的环境光线。 其次是人脸图像的预处理,利用Matlab中的图像处理工具对采集到的图像进行去噪、灰度化和归一化等操作,以提高后续处理的效果。 接下来是人脸特征提取和分析,通过Matlab中的图像处理和计算机视觉技术,提取人脸的关键特征,例如眼睛、鼻子和嘴巴的位置、角度等,并将其转化成数字表示,以便后续比对。 最后是人脸识别的比对和判断,将提取到的人脸特征与预先录入的用户信息进行比对,根据相似度或距离等指标进行匹配和识别,从而确定是否允许该人员进入。 综上所述,通过使用Matlab来实现人脸识别门禁系统,可以提高进出门禁的安全性和准确性。同时,需要根据具体的应用场景和需求,选择合适的算法和参数进行系统的设计和调整。
以下是基于PCA和BP神经网络的MATLAB人脸识别代码实现,其中包括数据预处理、特征提取、模型训练和测试等步骤。 1. 数据预处理 首先需要准备训练数据和测试数据。数据集可以使用公开的人脸数据库,如Yale人脸数据库、ORL人脸数据库等。这里以Yale人脸数据库为例,该数据库包含15个人的165张灰度图像,每个人有11张不同表情的图像。代码如下: matlab clear all; clc; % 读取数据 dataDir = 'yalefaces'; imgList = dir(fullfile(dataDir,'*.*')); imgNum = length(imgList); imgSize = [243, 320]; % 图像大小 imgData = zeros(imgSize(1)*imgSize(2), imgNum); for i = 1:imgNum img = imread(fullfile(dataDir, imgList(i).name)); img = imresize(img, imgSize); imgData(:,i) = img(:); end % 数据归一化 imgData = double(imgData); imgData = imgData - mean(imgData, 2); % 减去均值 imgData = imgData ./ std(imgData, 0, 2); % 归一化 2. 特征提取 接下来,使用PCA方法对数据进行降维,提取出最重要的特征。代码如下: matlab % PCA降维 [U,S,V] = svd(imgData, 'econ'); eigVals = diag(S).^2; energy = cumsum(eigVals) / sum(eigVals); thres = find(energy >= 0.99, 1); U = U(:,1:thres); feaData = U.' * imgData; 3. 模型训练 使用BP神经网络对特征进行分类。首先,将数据集分为训练集和测试集,代码如下: matlab % 数据集分割 trainNum = 10; % 每个人的训练样本数 testNum = 11 - trainNum; % 每个人的测试样本数 trainData = zeros(size(feaData,1), trainNum*15); trainLabel = zeros(15, trainNum*15); testData = zeros(size(feaData,1), testNum*15); testLabel = zeros(15, testNum*15); for i = 1:15 idx = (i-1)*11+1:i*11; trainData(:,(i-1)*trainNum+1:i*trainNum) = feaData(:,idx(1:trainNum)); trainLabel(i,(i-1)*trainNum+1:i*trainNum) = 1; testData(:,(i-1)*testNum+1:i*testNum) = feaData(:,idx(trainNum+1:end)); testLabel(i,(i-1)*testNum+1:i*testNum) = 1; end 然后,搭建BP神经网络模型并进行训练。代码如下: matlab % BP神经网络训练 net = feedforwardnet([20,10]); net.trainFcn = 'trainlm'; net.trainParam.show = 50; net.trainParam.epochs = 1000; net.trainParam.goal = 1e-5; net.trainParam.lr = 0.01; [net, tr] = train(net, trainData, trainLabel); 4. 模型测试 最后,使用测试数据对模型进行测试,并计算识别准确率。代码如下: matlab % BP神经网络测试 testOutput = net(testData); [~, testPred] = max(testOutput); [~, testTarget] = max(testLabel); accuracy = sum(testPred == testTarget) / length(testTarget); fprintf('Accuracy: %.2f%%\n', accuracy*100); 完整代码如下: matlab clear all; clc; % 读取数据 dataDir = 'yalefaces'; imgList = dir(fullfile(dataDir,'*.*')); imgNum = length(imgList); imgSize = [243, 320]; % 图像大小 imgData = zeros(imgSize(1)*imgSize(2), imgNum); for i = 1:imgNum img = imread(fullfile(dataDir, imgList(i).name)); img = imresize(img, imgSize); imgData(:,i) = img(:); end % 数据归一化 imgData = double(imgData); imgData = imgData - mean(imgData, 2); % 减去均值 imgData = imgData ./ std(imgData, 0, 2); % 归一化 % PCA降维 [U,S,V] = svd(imgData, 'econ'); eigVals = diag(S).^2; energy = cumsum(eigVals) / sum(eigVals); thres = find(energy >= 0.99, 1); U = U(:,1:thres); feaData = U.' * imgData; % 数据集分割 trainNum = 10; % 每个人的训练样本数 testNum = 11 - trainNum; % 每个人的测试样本数 trainData = zeros(size(feaData,1), trainNum*15); trainLabel = zeros(15, trainNum*15); testData = zeros(size(feaData,1), testNum*15); testLabel = zeros(15, testNum*15); for i = 1:15 idx = (i-1)*11+1:i*11; trainData(:,(i-1)*trainNum+1:i*trainNum) = feaData(:,idx(1:trainNum)); trainLabel(i,(i-1)*trainNum+1:i*trainNum) = 1; testData(:,(i-1)*testNum+1:i*testNum) = feaData(:,idx(trainNum+1:end)); testLabel(i,(i-1)*testNum+1:i*testNum) = 1; end % BP神经网络训练 net = feedforwardnet([20,10]); net.trainFcn = 'trainlm'; net.trainParam.show = 50; net.trainParam.epochs = 1000; net.trainParam.goal = 1e-5; net.trainParam.lr = 0.01; [net, tr] = train(net, trainData, trainLabel); % BP神经网络测试 testOutput = net(testData); [~, testPred] = max(testOutput); [~, testTarget] = max(testLabel); accuracy = sum(testPred == testTarget) / length(testTarget); fprintf('Accuracy: %.2f%%\n', accuracy*100);

最新推荐

模式识别实验报告.doc

神经网络常用算法实验报告,贝叶斯分类器、Fisher判别、K近邻、PCA特征提取、C均值聚类,包含算法原理、实验代码(MATLAB)、结果展示

基于51单片机的usb键盘设计与实现(1).doc

基于51单片机的usb键盘设计与实现(1).doc

"海洋环境知识提取与表示:专用导航应用体系结构建模"

对海洋环境知识提取和表示的贡献引用此版本:迪厄多娜·察查。对海洋环境知识提取和表示的贡献:提出了一个专门用于导航应用的体系结构。建模和模拟。西布列塔尼大学-布雷斯特,2014年。法语。NNT:2014BRES0118。电话:02148222HAL ID:电话:02148222https://theses.hal.science/tel-02148222提交日期:2019年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire论文/西布列塔尼大学由布列塔尼欧洲大学盖章要获得标题西布列塔尼大学博士(博士)专业:计算机科学海洋科学博士学院对海洋环境知识的提取和表示的贡献体系结构的建议专用于应用程序导航。提交人迪厄多内·察察在联合研究单位编制(EA编号3634)海军学院

react中antd组件库里有个 rangepicker 我需要默认显示的当前月1号到最后一号的数据 要求选择不同月的时候 开始时间为一号 结束时间为选定的那个月的最后一号

你可以使用 RangePicker 的 defaultValue 属性来设置默认值。具体来说,你可以使用 moment.js 库来获取当前月份和最后一天的日期,然后将它们设置为 RangePicker 的 defaultValue。当用户选择不同的月份时,你可以在 onChange 回调中获取用户选择的月份,然后使用 moment.js 计算出该月份的第一天和最后一天,更新 RangePicker 的 value 属性。 以下是示例代码: ```jsx import { useState } from 'react'; import { DatePicker } from 'antd';

基于plc的楼宇恒压供水系统学位论文.doc

基于plc的楼宇恒压供水系统学位论文.doc

"用于对齐和识别的3D模型计算机视觉与模式识别"

表示用于对齐和识别的3D模型马蒂厄·奥布里引用此版本:马蒂厄·奥布里表示用于对齐和识别的3D模型计算机视觉与模式识别[cs.CV].巴黎高等师范学校,2015年。英语NNT:2015ENSU0006。电话:01160300v2HAL Id:tel-01160300https://theses.hal.science/tel-01160300v22018年4月11日提交HAL是一个多学科的开放获取档案馆,用于存放和传播科学研究文件,无论它们是否已这些文件可能来自法国或国外的教学和研究机构,或来自公共或私人研究中心。L’archive ouverte pluridisciplinaire博士之路博士之路博士之路在获得等级时,DOCTEURDE L'ÉCOLE NORMALE SUPERIEURE博士学校ED 386:巴黎中心数学科学Discipline ou spécialité:InformatiquePrésentée et soutenue par:马蒂厄·奥布里le8 may 2015滴度表示用于对齐和识别的Unité derechercheThèse dirigée par陪审团成员équipe WILLOW(CNRS/ENS/INRIA UMR 8548)慕尼黑工业大学(TU Munich�

valueError: Pandas data cast to numpy dtype of object. Check input data with np.asarray(data).

这个错误通常发生在使用 Pandas DataFrame 时,其中包含了一些不能被转换为数字类型的数据。 解决方法是使用 `pd.to_numeric()` 函数将数据转换为数字类型。例如: ```python import pandas as pd import numpy as np # 创建一个包含字符串和数字的 DataFrame df = pd.DataFrame({'A': ['a', 'b', 'c'], 'B': [1, 2, '3']}) # 尝试将整个 DataFrame 转换为数字类型会报错 np.asarray(df, dtype=np.float) # 使

基于VC--的五子棋程序设计与实现毕业设计.doc

基于VC--的五子棋程序设计与实现毕业设计.doc

体系结构驱动的普遍性应用程序中

体系结构驱动的普遍性应用程序的自主适应艾蒂安·甘德里勒引用此版本:艾蒂安·甘德里勒。由体系结构驱动的普遍性应用程序的自主适应。无处不在的计算。格勒诺布尔大学,2014年。法语。NNT:2014GRENM078。电话:01215004HAL ID:电话:01215004https://theses.hal.science/tel-01215004提交日期:2015年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire论文要获得的等级格勒诺布尔大学博士专业:计算机科学部长令:2006年提交人艾蒂安·G·安德里尔论文由Philippe LAlanda指导由Stephanie CHollet共同指导在格勒诺布尔计算机科学实验室编写数学、信息科学与技术、计算机科学博士体系结构驱动的普遍性应用程序的自主适应论文�

STM32F103 RCT6 LCD显示正弦波并且设置可以调节振幅的触摸按键代码

以下是基于STM32F103RCT6和Keil MDK-ARM开发环境的LCD显示正弦波并且设置可以调节振幅的触摸按键代码: ```c #include "stm32f10x.h" #include "lcd.h" //LCD驱动库 #include "math.h" //数学库 #define PI 3.14159 //圆周率 void delay_ms(uint16_t n); int main(void) { float amplitude = 20; //振幅 float frequency = 1; //频率 float phase = 0; //相位