Error in segments(x, z, x, z2, col = col, cex = cex.symbols, lty = lty.hplot, : 'TA'颜色名字不对

时间: 2024-03-04 14:49:37 浏览: 117
PDF

Mastering ElasticSearch 5.0

这个错误信息提示 `TA` 不是一个有效的颜色名称。在 R 语言中,颜色可以用预定义的颜色名称(如 `"red"`、`"blue"` 等)或者 RGB 数值来表示。如果使用了一个不存在的颜色名称,就会出现这个错误。 解决这个错误的方法是更换颜色名称,或者使用 RGB 数值来表示颜色。例如,将颜色名称 `"TA"` 更换为 `"tomato"`: ```r plot(x, y, col = "tomato") ``` 或者使用 RGB 数值来表示颜色: ```r plot(x, y, col = rgb(255, 99, 71)) ``` 这样就可以避免颜色名称不对的错误了。
阅读全文

相关推荐

import torch import torch.nn as nn import torch.nn.functional as F import torchvision.transforms as transforms import skimage.segmentation as seg import numpy as np # 超参数 from PIL import Image num_superpixels = 1000 compactness = 10 sigma = 1 # 定义模型 class SuperpixelSegmentation(nn.Module): def init(self): super(SuperpixelSegmentation, self).init() self.convs = nn.Sequential( nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=True), nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=True), nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=True), nn.Conv2d(64, num_superpixels, kernel_size=1, stride=1) ) def forward(self, x): x = self.convs(x) return x # 加载图像 imgA = Image.open('1.png').convert('RGB') imgB = Image.open('2.jpg').convert('RGB') # 超像素分割 imgA_np = np.array(imgA) segments = seg.slic(imgA_np, n_segments=num_superpixels, compactness=compactness, sigma=sigma) segments = torch.from_numpy(segments).unsqueeze(0).unsqueeze(0).float() segments = F.interpolate(segments, size=(imgA.height, imgA.width), mode='nearest').long() # 应用超像素块范围到图像B imgB_np = np.array(imgB) for i in range(num_superpixels): mask = (segments == i) imgB_np[mask.expand(3, -1, -1)] = np.mean(imgB_np[mask.expand(3, -1, -1)], axis=1, keepdims=True) # 显示超像素分割图像 imgA_segments = np.zeros_like(imgA_np) for i in range(num_superpixels): mask = (segments == i) imgA_segments[mask.expand(3, -1, -1)] = np.random.randint(0, 255, size=(3,)) imgA_segments = Image.fromarray(imgA_segments.astype(np.uint8)) imgB_segments = Image.fromarray(imgB_np) # 显示图像 transforms.ToPILImage()(imgA).show() transforms.ToPILImage()(imgB).show() imgA_segments.show() imgB_segments.show()上述代码出现错误:RuntimeError: expand(CPUBoolType{[1, 1, 512, 512]}, size=[3, -1, -1]): the number of sizes provided (3) must be greater or equal to the number of dimensions in the tensor (4)

import torch import torch.nn.functional as F from skimage.segmentation import slic, mark_boundaries import torchvision.transforms as transforms import numpy as np from PIL import Image import matplotlib.pyplot as plt # 加载图像 image = Image.open('3.jpg') # 转换为 PyTorch 张量 transform = transforms.ToTensor() img_tensor = transform(image).unsqueeze(0) # 将 PyTorch 张量转换为 Numpy 数组 img_np = img_tensor.numpy().transpose(0, 2, 3, 1)[0] # 使用 SLIC 算法生成超像素标记图 segments = slic(img_np, n_segments=60, compactness=10) # 可视化超像素索引映射 plt.imshow(segments, cmap='gray') plt.show() # 将超像素索引映射可视化 segment_img = mark_boundaries(img_np, segments) # 将 Numpy 数组转换为 PIL 图像 segment_img = Image.fromarray((segment_img * 255).astype(np.uint8)) # 保存超像素索引映射可视化 segment_img.save('segment_map.jpg') # 定义超像素池化函数 def superpixel_pooling(feature_map, segments): # 获取超像素数量和特征维度 n_segments = np.unique(segments).size n_channels = feature_map.shape[0] # 初始化超像素特征 pooled_features = torch.zeros((n_segments, n_channels)) # 对每个超像素内的像素特征进行聚合 for segment_id in range(n_segments): mask = (segments == segment_id).reshape(-1, 1, 1) pooled_feature = (feature_map * mask.float()).sum(dim=(1, 2)) / mask.sum() pooled_features[segment_id] = pooled_feature return pooled_features # 进行超像素池化 pooled_features = superpixel_pooling(img_tensor, segments) # 可视化超像素特征图 plt.imshow(pooled_features.transpose(0, 1), cmap='gray') plt.show(),上述代码出现问题:AttributeError: 'numpy.ndarray' object has no attribute 'float'

from skimage.segmentation import slic, mark_boundaries import torchvision.transforms as transforms import numpy as np from PIL import Image import matplotlib.pyplot as plt import torch.nn as nn import torch # 定义超像素池化层 class SuperpixelPooling(nn.Module): def init(self, n_segments): super(SuperpixelPooling, self).init() self.n_segments = n_segments def forward(self, x): # 使用 SLIC 算法生成超像素标记图 segments = slic(x.numpy().transpose(1, 2, 0), n_segments=self.n_segments, compactness=10) # 将超像素标记图转换为张量 segments_tensor = torch.from_numpy(segments).unsqueeze(0).unsqueeze(0) # 将张量 x 与超像素标记图张量 segments_tensor 进行逐元素相乘 pooled = x * segments_tensor.float() # 在超像素维度上进行最大池化 pooled = nn.AdaptiveMaxPool2d((self.n_segments, 1))(pooled) # 压缩超像素维度 pooled = pooled.squeeze(3) # 返回池化后的特征图 return pooled # 加载图像 image = Image.open('3.jpg') # 转换为 PyTorch 张量 transform = transforms.ToTensor() img_tensor = transform(image).unsqueeze(0) # 将 PyTorch 张量转换为 Numpy 数组 img_np = img_tensor.numpy().transpose(0, 2, 3, 1)[0] # 使用 SLIC 算法生成超像素标记图 segments = slic(img_np, n_segments=60, compactness=10) # 将超像素标记图转换为张量 segments_tensor = torch.from_numpy(segments).unsqueeze(0).float() # 将超像素索引映射可视化 plt.imshow(segments, cmap='gray') plt.show() # 将 Numpy 数组转换为 PIL 图像 segment_img = Image.fromarray((mark_boundaries(img_np, segments) * 255).astype(np.uint8)) # 保存超像素索引映射可视化 segment_img.save('segment_map.jpg') # 使用超像素池化层进行池化 pooling_layer = SuperpixelPooling(n_segments=60) pooled_tensor = pooling_layer(img_tensor) # 将超像素池化后的特征图可视化 plt.imshow(pooled_tensor.squeeze().numpy().transpose(1, 0), cmap='gray') plt.show() ,上述代码出现问题:segments = slic(x.numpy().transpose(1, 2, 0), n_segments=self.n_segments, compactness=10) ValueError: axes don't match array,如何修改

import cv2 import numpy as np import torch from skimage.segmentation import slic from skimage.util import img_as_float # 读取A图像和B图像 img_a = cv2.imread(r'D:\Users\Administrator\PycharmProjects\pythonProject\my tools\super_pixel\1.png') img_b = cv2.imread(r'D:\Users\Administrator\PycharmProjects\pythonProject\my tools\super_pixel\2.jpg') # 转换为浮点数 img_a = img_as_float(img_a) img_b = img_as_float(img_b) # 使用SLIC算法进行超像素分割 segments_a = slic(img_a, n_segments=1000, compactness=10) segments_b = slic(img_b, n_segments=1000, compactness=10) # 计算A图像的超像素范围 segment_ids = np.unique(segments_a) segment_ranges = [] for segment_id in segment_ids: y, x = np.where(segments_a == segment_id) min_x, max_x = np.min(x), np.max(x) min_y, max_y = np.min(y), np.max(y) segment_ranges.append((min_x, min_y, max_x, max_y)) # 创建A图像的超像素范围图 segment_map_a = np.zeros_like(segments_a, dtype=np.int32) for i, segment_range in enumerate(segment_ranges): min_x, min_y, max_x, max_y = segment_range segment_map_a[min_y:max_y+1, min_x:max_x+1] = i # 使用A图像的超像素范围索引对B图像进行分割 segment_map_b = np.zeros_like(segments_b, dtype=np.int32) for i, segment_range in enumerate(segment_ranges): min_x, min_y, max_x, max_y = segment_range segment_id = segments_a[min_y, min_x] y, x = np.where(segments_b == segment_id) segment_map_b[y, x] = i # 转换为PyTorch张量 segment_map_b = torch.Tensor(segment_map_b).long() # 显示B图像的超像素范围图 cv2.imshow('Segment Map', segment_map_b.numpy()) cv2.waitKey(0) cv2.destroyAllWindows()。上述代码出现错误: cv2.imshow('Segment Map', segment_map_b.numpy()) cv2.error: OpenCV(4.7.0) D:/a/opencv-python/opencv-python/opencv/modules/highgui/src/precomp.hpp:155: error: (-215:Assertion failed) src_depth != CV_16F && src_depth != CV_32S in function 'convertToShow'

img = imread(r'I:\\18Breakageratecalculation\\mask-slic use\\maskSLIC-master\\1\\056.jpg') # The ROI is also stored as an image for viewing convenience # But the roi input input maskSLIC should be a binary image with the same spatial # Dimensions as the image (in this case 300x451) roi = imread(r'I:\\18Breakageratecalculation\\mask-slic use\\maskSLIC-master\\1\\0562.png') # The alpha channel is used to store the ROI in this case and is converted into a logical array of 0s and 1s roi = roi[:, :, 3] > 0 # Alternatively a mask could be created manually with for example a disk: # roi = np.zeros((img.shape[0], img.shape[1])) # a, b = 150, 150 # r = 100 # y,x = np.ogrid[-a:img.shape[0]-a, -b:img.shape[1]-b] # mask = x*x + y*y <= r*r # roi[mask] = 1 # ~~~~~~~~~~~~ Example 1: maskSLIC ~~~~~~~~~~~~~ t1 = time.time() # Note that compactness is defined differently because a grid is not used. Lower compactness for maskSLIC is equivalent segments = seg.slic(img, compactness=10, seed_type='nplace', mask=roi, n_segments=120, recompute_seeds=True, plot_examples=True, enforce_connectivity=True) print("Time: {:.2f} s".format(time.time() - t1)) plt.figure() plt.imshow(mark_boundaries(img, segments)) plt.contour(roi, contours=1, colors='red', linewidths=0.5) plt.axis('off') # ~~~~~~~~~~~ Example 2: SLIC ~~~~~~~~~~~~~~~~~ t1 = time.time() segments = seg.slic(img, compactness=10, seed_type='grid', n_segments=100, plot_examples=False, enforce_connectivity=True) # segments[roi==0] = -1 print("Time: {:.2f} s".format(time.time() - t1)) plt.figure() plt.imshow(mark_boundaries(img, segments)) plt.contour(roi, contours=1, colors='red', linewidths=1) plt.axis('off') plt.show() plt.show()怎么保存结果

最新推荐

recommend-type

精细金属掩模板(FMM)行业研究报告 显示技术核心部件FMM材料产业分析与市场应用

精细金属掩模板(FMM)作为OLED蒸镀工艺中的核心消耗部件,负责沉积RGB有机物质形成像素。材料由Frame、Cover等五部分组成,需满足特定热膨胀性能。制作工艺包括蚀刻、电铸等,影响FMM性能。适用于显示技术研究人员、产业分析师,旨在提供FMM材料技术发展、市场规模及产业链结构的深入解析。
recommend-type

【创新未发表】斑马算法ZOA-Kmean-Transformer-LSTM负荷预测Matlab源码 9515期.zip

CSDN海神之光上传的全部代码均可运行,亲测可用,直接替换数据即可,适合小白; 1、代码压缩包内容 主函数:Main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2024b;若运行有误,根据提示修改;若不会,可私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开除Main.m的其他m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博主博客文章底部QQ名片; 4.1 CSDN博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 智能优化算法优化Kmean-Transformer-LSTM负荷预测系列程序定制或科研合作方向: 4.4.1 遗传算法GA/蚁群算法ACO优化Kmean-Transformer-LSTM负荷预测 4.4.2 粒子群算法PSO/蛙跳算法SFLA优化Kmean-Transformer-LSTM负荷预测 4.4.3 灰狼算法GWO/狼群算法WPA优化Kmean-Transformer-LSTM负荷预测 4.4.4 鲸鱼算法WOA/麻雀算法SSA优化Kmean-Transformer-LSTM负荷预测 4.4.5 萤火虫算法FA/差分算法DE优化Kmean-Transformer-LSTM负荷预测 4.4.6 其他优化算法优化Kmean-Transformer-LSTM负荷预测
recommend-type

j link 修复问题套件

j link 修复问题套件
recommend-type

Angular实现MarcHayek简历展示应用教程

资源摘要信息:"MarcHayek-CV:我的简历的Angular应用" Angular 应用是一个基于Angular框架开发的前端应用程序。Angular是一个由谷歌(Google)维护和开发的开源前端框架,它使用TypeScript作为主要编程语言,并且是单页面应用程序(SPA)的优秀解决方案。该应用不仅展示了Marc Hayek的个人简历,而且还介绍了如何在本地环境中设置和配置该Angular项目。 知识点详细说明: 1. Angular 应用程序设置: - Angular 应用程序通常依赖于Node.js运行环境,因此首先需要全局安装Node.js包管理器npm。 - 在本案例中,通过npm安装了两个开发工具:bower和gulp。bower是一个前端包管理器,用于管理项目依赖,而gulp则是一个自动化构建工具,用于处理如压缩、编译、单元测试等任务。 2. 本地环境安装步骤: - 安装命令`npm install -g bower`和`npm install --global gulp`用来全局安装这两个工具。 - 使用git命令克隆远程仓库到本地服务器。支持使用SSH方式(`***:marc-hayek/MarcHayek-CV.git`)和HTTPS方式(需要替换为具体用户名,如`git clone ***`)。 3. 配置流程: - 在server文件夹中的config.json文件里,需要添加用户的电子邮件和密码,以便该应用能够通过内置的联系功能发送信息给Marc Hayek。 - 如果想要在本地服务器上运行该应用程序,则需要根据不同的环境配置(开发环境或生产环境)修改config.json文件中的“baseURL”选项。具体而言,开发环境下通常设置为“../build”,生产环境下设置为“../bin”。 4. 使用的技术栈: - JavaScript:虽然没有直接提到,但是由于Angular框架主要是用JavaScript来编写的,因此这是必须理解的核心技术之一。 - TypeScript:Angular使用TypeScript作为开发语言,它是JavaScript的一个超集,添加了静态类型检查等功能。 - Node.js和npm:用于运行JavaScript代码以及管理JavaScript项目的依赖。 - Git:版本控制系统,用于代码的版本管理及协作开发。 5. 关于项目结构: - 该应用的项目文件夹结构可能遵循Angular CLI的典型结构,包含了如下目录:app(存放应用组件)、assets(存放静态资源如图片、样式表等)、environments(存放环境配置文件)、server(存放服务器配置文件如上文的config.json)等。 6. 开发和构建流程: - 开发时,可能会使用Angular CLI来快速生成组件、服务等,并利用热重载等特性进行实时开发。 - 构建应用时,通过gulp等构建工具可以进行代码压缩、ES6转译、单元测试等自动化任务,以确保代码的质量和性能优化。 7. 部署: - 项目最终需要部署到服务器上,配置文件中的“baseURL”选项指明了服务器上的资源基础路径。 8. 关于Git仓库: - 压缩包子文件的名称为MarcHayek-CV-master,表明这是一个使用Git版本控制的仓库,且存在一个名为master的分支,这通常是项目的主分支。 以上知识点围绕Angular应用“MarcHayek-CV:我的简历”的创建、配置、开发、构建及部署流程进行了详细说明,涉及了前端开发中常见的工具、技术及工作流。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

深入剖析:内存溢出背后的原因、预防及应急策略(专家版)

![深入剖析:内存溢出背后的原因、预防及应急策略(专家版)](https://d8it4huxumps7.cloudfront.net/uploads/images/65e82a01a4196_dangling_pointer_in_c_2.jpg?d=2000x2000) 参考资源链接:[Net 内存溢出(System.OutOfMemoryException)的常见情况和处理方式总结](https://wenku.csdn.net/doc/6412b784be7fbd1778d4a95f?spm=1055.2635.3001.10343) # 1. 内存溢出的概念及影响 内存溢出,又称
recommend-type

Java中如何对年月日时分秒的日期字符串作如下处理:如何日期分钟介于两个相连的半点之间,就将分钟数调整为前半点

在Java中,你可以使用`java.time`包中的类来处理日期和时间,包括格式化和调整。下面是一个示例,展示了如何根据给定的日期字符串(假设格式为"yyyy-MM-dd HH:mm:ss")进行这样的处理: ```java import java.text.SimpleDateFormat; import java.time.LocalDateTime; import java.time.ZoneId; import java.time.ZonedDateTime; public class Main { public static void main(String[] args
recommend-type

Crossbow Spot最新更新 - 获取Chrome扩展新闻

资源摘要信息:"Crossbow Spot - Latest News Update-crx插件" 该信息是关于一款特定的Google Chrome浏览器扩展程序,名为"Crossbow Spot - Latest News Update"。此插件的目的是帮助用户第一时间获取最新的Crossbow Spot相关信息,它作为一个RSS阅读器,自动聚合并展示Crossbow Spot的最新新闻内容。 从描述中可以提取以下关键知识点: 1. 功能概述: - 扩展程序能让用户领先一步了解Crossbow Spot的最新消息,提供实时更新。 - 它支持自动更新功能,用户不必手动点击即可刷新获取最新资讯。 - 用户界面设计灵活,具有美观的新闻小部件,使得信息的展现既实用又吸引人。 2. 用户体验: - 桌面通知功能,通过Chrome的新通知中心托盘进行实时推送,确保用户不会错过任何重要新闻。 - 提供一个便捷的方式来保持与Crossbow Spot最新动态的同步。 3. 语言支持: - 该插件目前仅支持英语,但开发者已经计划在未来的版本中添加对其他语言的支持。 4. 技术实现: - 此扩展程序是基于RSS Feed实现的,即从Crossbow Spot的RSS源中提取最新新闻。 - 扩展程序利用了Chrome的通知API,以及RSS Feed处理机制来实现新闻的即时推送和展示。 5. 版权与免责声明: - 所有的新闻内容都是通过RSS Feed聚合而来,扩展程序本身不提供原创内容。 - 用户在使用插件时应遵守相关的版权和隐私政策。 6. 安装与使用: - 用户需要从Chrome网上应用店下载.crx格式的插件文件,即Crossbow_Spot_-_Latest_News_Update.crx。 - 安装后,插件会自动运行,并且用户可以对其进行配置以满足个人偏好。 从以上信息可以看出,该扩展程序为那些对Crossbow Spot感兴趣或需要密切跟进其更新的用户提供了一个便捷的解决方案,通过集成RSS源和Chrome通知机制,使得信息获取变得更加高效和及时。这对于需要实时更新信息的用户而言,具有一定的实用价值。同时,插件的未来发展计划中包括了多语言支持,这将使得更多的用户能够使用并从中受益。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【Java内存管理终极指南】:一次性解决内存溢出、泄漏和性能瓶颈

![【Java内存管理终极指南】:一次性解决内存溢出、泄漏和性能瓶颈](https://community.cloudera.com/t5/image/serverpage/image-id/31614iEBC942A7C6D4A6A1/image-size/large?v=v2&px=999) 参考资源链接:[Net 内存溢出(System.OutOfMemoryException)的常见情况和处理方式总结](https://wenku.csdn.net/doc/6412b784be7fbd1778d4a95f?spm=1055.2635.3001.10343) # 1. Java内存模型