hadoop运行scala
时间: 2023-09-05 18:07:55 浏览: 254
大数据实训,使用文件,包含Hadoop和Scala的
要在Hadoop上运行Scala程序,有两种方法:
1. 使用Hadoop Streaming
Hadoop Streaming是一种通用的方式,可以用来在Hadoop上运行任何语言的程序,包括Scala。您可以将Scala程序打包为一个可执行的JAR文件,并使用Hadoop Streaming来运行它。以下是一个示例:
```
$HADOOP_HOME/bin/hadoop jar /path/to/hadoop-streaming.jar \
-input /path/to/input \
-output /path/to/output \
-mapper "scala my.package.MyMapper" \
-reducer "scala my.package.MyReducer"
```
2. 使用Hadoop Scala API
Hadoop Scala API是Hadoop提供的Scala API,可以用来编写Hadoop作业。您可以使用它来编写Scala程序,并在Hadoop集群上运行它们。以下是一个示例:
```scala
import org.apache.hadoop.fs.FileSystem
import org.apache.hadoop.fs.Path
import org.apache.hadoop.io.IntWritable
import org.apache.hadoop.io.Text
import org.apache.hadoop.mapreduce.Job
import org.apache.hadoop.mapreduce.Mapper
import org.apache.hadoop.mapreduce.Reducer
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat
object WordCount {
def main(args: Array[String]) {
val job = Job.getInstance()
job.setJarByClass(WordCount.getClass())
job.setJobName("wordcount")
FileInputFormat.addInputPath(job, new Path(args(0)))
FileOutputFormat.setOutputPath(job, new Path(args(1)))
job.setMapperClass(classOf[TokenizerMapper])
job.setCombinerClass(classOf[IntSumReducer])
job.setReducerClass(classOf[IntSumReducer])
job.setOutputKeyClass(classOf[Text])
job.setOutputValueClass(classOf[IntWritable])
val success = job.waitForCompletion(true)
System.exit(if (success) 0 else 1)
}
}
class TokenizerMapper extends Mapper[Object, Text, Text, IntWritable] {
private val one = new IntWritable(1)
private val word = new Text()
override def map(key: Object, value: Text, context: Mapper[Object, Text, Text, IntWritable]#Context) {
value.toString().split("\\s+").foreach { w =>
word.set(w)
context.write(word, one)
}
}
}
class IntSumReducer extends Reducer[Text, IntWritable, Text, IntWritable] {
private val result = new IntWritable()
override def reduce(key: Text, values: java.lang.Iterable[IntWritable], context: Reducer[Text, IntWritable, Text, IntWritable]#Context) {
val sum = values.asScala.foldLeft(0)(_ + _.get())
result.set(sum)
context.write(key, result)
}
}
```
要编译和打包此程序,您需要使用sbt或Maven等构建工具。在此之后,您可以将JAR文件提交到Hadoop集群并运行它。例如:
```
$HADOOP_HOME/bin/hadoop jar /path/to/wordcount.jar /path/to/input /path/to/output
```
阅读全文