matlab中fitness_function = @(chromosome) schedule_fitness(chromosome, processing_times, num_jobs, num_machines);
时间: 2024-04-06 12:33:05 浏览: 117
在 Matlab 中,fitness_function 是一个函数句柄(function handle),指向了一个用户定义的函数。这个函数的输入参数是一个染色体 chromosome,输出是染色体 chromosome 的适应度值,即该染色体所对应的解在问题中的优劣程度。
在这个例子中,fitness_function 句柄指向的是 schedule_fitness 函数,该函数的输入参数包括 chromosome、processing_times、num_jobs 和 num_machines。其中 chromosome 是一个行向量,表示染色体的基因序列;processing_times 是一个 num_jobs × num_machines 的矩阵,表示每个工件在每个机器上的加工时间。schedule_fitness 函数的输出是染色体 chromosome 对应的调度方案在问题中的适应度值。
这里使用函数句柄的好处是可以将函数作为参数传递给遗传算法的优化函数,实现通用的优化框架。
相关问题
def genetic_algorithm(F_time_list, int_result2, max_iteration=100): population_size = 10 chromosome_length = 10 population = [''.join([random.choice(['0', '1']) for _ in range(chromosome_length)]) for _ in range(population_size)] for i in range(max_iteration): fitness_scores = [fitness_score(chromosome, F_time_list, int_result2) for chromosome in population] if any([score == 0 for score in fitness_scores]): return population[fitness_scores.index(0)] parents = roulette_selection(population, fitness_scores) children = two_point_crossover(parents[0], parents[1]) mutated_children = [mutation(child) for child in children] population = population + mutated_children best_chromosome = max(population, key=lambda x: fitness_score(x, f_points, pf_lengths)) return best_chromosome print(genetic_algorithm(F_time_list, int_result2))
在你提供的代码中,存在一些错误:
1. `for` 循环缺少缩进,需要将 `for` 循环和后面的代码块缩进到同一层级。
2. `f_points` 和 `pf_lengths` 未定义,可能会导致 NameError 错误。你需要检查一下这两个变量是否在代码中定义过。
3. `print` 语句和 `genetic_algorithm` 函数之间有空格,这会导致语法错误。
下面是修改后的代码:
```
def genetic_algorithm(F_time_list, int_result2, max_iteration=100):
population_size = 10
chromosome_length = 10
population = [''.join([random.choice(['0', '1']) for _ in range(chromosome_length)]) for _ in range(population_size)]
for i in range(max_iteration):
fitness_scores = [fitness_score(chromosome, F_time_list, int_result2) for chromosome in population]
if any([score == 0 for score in fitness_scores]):
return population[fitness_scores.index(0)]
parents = roulette_selection(population, fitness_scores)
children = two_point_crossover(parents[0], parents[1])
mutated_children = [mutation(child) for child in children]
population = population + mutated_children
best_chromosome = max(population, key=lambda x: fitness_score(x, f_points, pf_lengths))
return best_chromosome
print(genetic_algorithm(F_time_list, int_result2))
```
请注意,由于我不知道你的完整代码,因此这只是一个基于你提供的代码的修改建议,并不能保证代码能够完全运行。
免疫遗传算法优化 def immune_genetic_algorithm(population_size, chromosome_length, max_generations): population = np.random.uniform(-1, 1, (population_size, chromosome_length)) best_fitness = 0 best_individual = None for generation in range(max_generations): fitness_values = np.zeros(population_size) # 计算适应度值 for i in range(population_size): fitness_values[i] = fitness_function(population[i]) # 更新最佳个体 if fitness_values[i] > best_fitness: best_fitness = fitness_values[i] best_individual = population[i]我需要上述代码的适应度函数是BP*网络的实际输出值与预期输出值之间的均方误差的倒数,并且种群编码方式是二进制编码
好的,你希望使用免疫遗传算法来优化一个基于BP网络的适应度函数。适应度函数是基于实际输出值与预期输出值之间的均方误差的倒数。种群的编码方式是二进制编码。下面是相应的代码:
```python
import numpy as np
def immune_genetic_algorithm(population_size, chromosome_length, max_generations):
population = np.random.randint(2, size=(population_size, chromosome_length))
best_fitness = 0
best_individual = None
for generation in range(max_generations):
fitness_values = np.zeros(population_size)
# 计算适应度值
for i in range(population_size):
fitness_values[i] = fitness_function(population[i])
# 更新最佳个体
best_index = np.argmax(fitness_values)
if fitness_values[best_index] > best_fitness:
best_fitness = fitness_values[best_index]
best_individual = population[best_index]
# 进行免疫选择
population = immune_selection(population, fitness_values)
# 进行遗传操作
population = genetic_operation(population)
return best_individual
def fitness_function(individual):
# 将二进制编码转换为BP网络的参数形式
# 进行BP网络的训练,并计算适应度值
return fitness_value
def immune_selection(population, fitness_values):
# 根据适应度值进行免疫选择操作
return selected_population
def genetic_operation(population):
# 进行遗传操作,如交叉、变异等
return new_population
# 设置参数并运行免疫遗传算法
population_size = 100
chromosome_length = 10
max_generations = 50
best_individual = immune_genetic_algorithm(population_size, chromosome_length, max_generations)
```
请注意,上述代码仅为示例,具体的适应度函数、免疫选择操作和遗传操作需要根据你的具体问题进行实现。希望对你有帮助!如有任何问题,请随时提问。
阅读全文
相关推荐















