Yolov3中的scale变化经典方法的详细解说以及例子

时间: 2023-12-20 14:15:18 浏览: 47
Yolov3中的scale变化经典方法是指在训练过程中,对输入图片进行多尺度处理,从而提高模型的检测精度。具体来说,该方法将原始图片缩放到不同的尺度,在每个尺度上分别进行检测,然后将检测结果合并,得到最终的检测结果。 例如,在训练过程中,我们可以将输入图片分别缩放到416x416、608x608和800x800三种不同的尺度,然后在每个尺度上进行检测。对于每个尺度,在输出层上都会得到一组检测结果,其中每个检测结果包含物体类别、位置和置信度等信息。最终,我们将这些检测结果合并起来,得到最终的检测结果。 这种方法的优点是可以在不同尺度下检测不同大小的物体,从而提高检测精度。同时,该方法还可以增加训练数据量,提高模型的泛化能力。 在实际应用中,我们可以根据具体情况选择不同的尺度进行训练。例如,如果我们需要检测小型物体,可以选择较小的尺度;如果需要检测大型物体,可以选择较大的尺度。同时,我们还可以使用数据增强等方法来增加训练数据量,进一步提高模型的检测精度。 总之,Yolov3中的scale变化经典方法是一种有效的提高检测精度的方法,可以根据具体情况进行选择和调整,从而得到更好的检测结果。
相关问题

yolov8 scale

YOLOv8有不同的scale设置,分别是n、s、m、l和x。这些scale设置对应了不同的模型大小和性能。具体的scale设置如下: - n: [0.33, 0.25, 1024],对应YOLOv8n模型,包含225层,3157200个参数,8.9 GFLOPs的计算量。 - s: [0.33, 0.50, 1024],对应YOLOv8s模型,包含225层,11166560个参数,28.8 GFLOPs的计算量。 - m: [0.67, 0.75, 768],对应YOLOv8m模型,包含295层,25902640个参数,79.3 GFLOPs的计算量。 - l: [1.00, 1.00, 512],对应YOLOv8l模型,包含365层,43691520个参数,165.7 GFLOPs的计算量。 - x: [1.00, 1.25, 512],对应YOLOv8x模型,包含365层,68229648个参数,258.5 GFLOPs的计算量。[1] 这些scale设置可以根据具体的需求选择,较小的scale会有更少的参数和计算量,适合在计算资源有限的情况下使用,而较大的scale则会有更高的性能和准确性,但需要更多的计算资源。[2] YOLOv8是YOLOv5的下一个重大更新版本,由ultralytics公司在2023年1月10日开源。[3]

ResRep 剪枝方法 YOLOv5 6.1中的应用,完整详细代码复现

ResRep 剪枝方法是一种基于残差网络的剪枝方法,可以有效地减少神经网络模型的参数和计算量,同时保持模型的精度。 在 YOLOv5 6.1 版本中,已经应用了 ResRep 剪枝方法,可以通过以下步骤进行完整详细代码复现: 1. 下载 YOLOv5 6.1 版本的代码,并安装相关依赖。 ``` git clone https://github.com/ultralytics/yolov5.git cd yolov5/ pip install -r requirements.txt ``` 2. 下载 COCO 数据集,并将其放在 `data/` 文件夹中。 ``` mkdir data/ cd data/ wget https://github.com/ultralytics/yolov5/releases/download/v6.0/coco128.zip unzip coco128.zip cd .. ``` 3. 在 `models/yolov5s.yaml` 文件中,修改模型的 `anchors`、`nc` 和 `depth_multiple` 参数。 ``` anchors: - [10,13, 16,30, 33,23] # P3/8 - [30,61, 62,45, 59,119] # P4/16 - [116,90, 156,198, 373,326] # P5/32 nc: 80 depth_multiple: 0.33 ``` 4. 在 `train.py` 文件中,修改训练参数,包括 `epochs`、`batch-size` 和 `img-size` 等。 ``` python train.py --img 640 --batch 16 --epochs 300 --data coco.yaml --cfg models/yolov5s.yaml --weights '' --name yolov5s_resrep ``` 5. 在 `models/yolo.py` 文件中,添加 ResRep 剪枝方法的相关代码,包括 `resrep_prune()` 和 `forward` 函数的修改。 ``` import torch.nn as nn import torch.nn.functional as F from models.common import Conv, Bottleneck, SPP, DWConv, Focus, Concat from utils.torch_utils import time_synchronized class ResRep(nn.Module): def __init__(self, model, prune_idx): super(ResRep, self).__init__() self.model = model self.prune_idx = prune_idx def forward(self, x): # Forward pass through the pruned model for i, m in enumerate(self.model): x = m(x) if i == self.prune_idx: break return x def resrep_prune(self, threshold): # Prune the model based on the threshold pruned_idx = [] for i, m in enumerate(self.model): if isinstance(m, Bottleneck): if m.bn3.weight is not None: mask = m.bn3.weight.data.abs().ge(threshold).float().cuda() m.bn3.weight.data.mul_(mask) m.bn3.bias.data.mul_(mask) m.conv3.weight.data.mul_(mask.view(-1, 1, 1, 1)) pruned_idx.append(i) elif isinstance(m, Conv): if m.bn.weight is not None: mask = m.bn.weight.data.abs().ge(threshold).float().cuda() m.bn.weight.data.mul_(mask) m.bn.bias.data.mul_(mask) m.conv.weight.data.mul_(mask.view(-1, 1, 1, 1)) pruned_idx.append(i) self.prune_idx = max(pruned_idx) class YOLOLayer(nn.Module): def __init__(self, anchors, nc, img_size, yolo_idx): super(YOLOLayer, self).__init__() self.anchors = torch.Tensor(anchors) self.na = self.anchors.shape[0] # number of anchors self.nc = nc # number of classes self.no = self.nc + 5 # number of outputs per anchor self.img_size = img_size self.grid_size = 0 # grid size self.stride = 0 # stride self.grid = self.create_grid(img_size) self.scaled_anchors = torch.Tensor([(a_w / self.stride, a_h / self.stride) for a_w, a_h in self.anchors]) self.anchor_w = self.scaled_anchors[:, 0:1].view((1, self.na, 1, 1)) self.anchor_h = self.scaled_anchors[:, 1:2].view((1, self.na, 1, 1)) self.yolo_idx = yolo_idx def forward(self, x): # Residual block x = self.residual(x, 1) # Feature extraction x = self.extract(x, 2) # Pruning x = self.prune(x, 3) # Detection x = self.detect(x, 4) return x def residual(self, x, n): for i in range(n): x = self.m[i](x) + x return x def extract(self, x, n): for i in range(n): x = self.m[i](x) return x def prune(self, x, n): self.resrep.resrep_prune(threshold=0.1) x = self.resrep(x) return x def detect(self, x, n): # Predict on center io = x.clone()[:, :, self.grid_size[1] // 2:self.grid_size[1] // 2 + 1, self.grid_size[0] // 2:self.grid_size[0] // 2 + 1] io[..., 4] += self.grid_x io[..., 5] += self.grid_y io[..., :2] = self.sigmoid(io[..., :2]) * 2. - 0.5 + self.grid.to(x.device) io[..., 2:4] = (self.sigmoid(io[..., 2:4]) * 2) ** 2 * self.anchor_wh[self.anchor_vec == self.yolo_idx] io[..., :4] *= self.stride return io.view(io.shape[0], -1, self.no), x class Model(nn.Module): def __init__(self, cfg='models/yolov5s.yaml', ch=3, nc=None): super(Model, self).__init__() self.model, self.save = parse_model(deepcopy(yaml.load(open(cfg, 'r')))) self.stride = torch.tensor([32, 16, 8]) self.ch = ch self.nc = nc self.hyper_params = self.model.pop('hyper_params') self.init_weights() def forward(self, x): y, dt = [], [] for i, m in enumerate(self.model): x = m(x) if i in [2, 4, 6]: y.append(x) dt.append(None) return y, dt def init_weights(self): # Initialize weights for m in self.modules(): t = type(m) if t is Conv: pass # nn.init.kaiming_normal_(m.conv.weight, mode='fan_out', nonlinearity='relu') elif t is DWConv: pass # nn.init.kaiming_normal_(m.conv.weight, mode='fan_out', nonlinearity='relu') m.bn.weight.data.fill_(1.0) m.bn.bias.data.fill_(0) elif t is nn.BatchNorm2d: m.eps = 1e-3 m.momentum = 0.03 def prune(self, threshold): # Apply ResRep pruning to the model pruned_idx = [] for i, m in enumerate(self.model): if isinstance(m, Bottleneck): if m.bn3.weight is not None: mask = m.bn3.weight.data.abs().ge(threshold).float().cuda() m.bn3.weight.data.mul_(mask) m.bn3.bias.data.mul_(mask) m.conv3.weight.data.mul_(mask.view(-1, 1, 1, 1)) pruned_idx.append(i) elif isinstance(m, Conv): if m.bn.weight is not None: mask = m.bn.weight.data.abs().ge(threshold).float().cuda() m.bn.weight.data.mul_(mask) m.bn.bias.data.mul_(mask) m.conv.weight.data.mul_(mask.view(-1, 1, 1, 1)) pruned_idx.append(i) elif isinstance(m, YOLOLayer): m.resrep = ResRep(m.m, self.prune_idx) m.resrep.resrep_prune(threshold=0.1) pruned_idx.append(i) self.prune_idx = max(pruned_idx) def fuse(self): # Fuse Conv+BN and Conv+ReLU into Conv print('Fusing layers...') for m in self.modules(): if type(m) is Conv and type(m.bn) is nn.BatchNorm2d: m.conv = fuse_conv_bn(m.conv, m.bn) delattr(m, 'bn') elif type(m) is nn.Sequential: for i, v in enumerate(m): if type(v) is Conv and type(v.bn) is nn.BatchNorm2d: v.conv = fuse_conv_bn(v.conv, v.bn) delattr(v, 'bn') elif type(v) is Conv and hasattr(m[i + 1], 'act'): v.conv = fuse_conv_relu(v.conv, m[i + 1].act) delattr(m[i + 1], 'act') elif type(v) is nn.BatchNorm2d and hasattr(m[i + 1], 'act'): delattr(m[i + 1], 'act') elif type(m) is nn.BatchNorm2d: if not hasattr(m, 'act'): m.act = nn.ReLU(inplace=True) def info(self, verbose=False): # Print model information model_info(self, verbose) def parse_model(d, ch=3, nc=None): # model_dict, input_channels, num_classes anchors, nc = d['anchors'], d['nc'] na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors layers, save, c2 = [], [], ch for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): m = eval(m) if isinstance(m, str) else m # eval strings for j, a in enumerate(args): try: args[j] = eval(a) if isinstance(a, str) else a # eval strings except: pass n = '' if n == 1 else n if m in [Conv, DWConv, Focus, Bottleneck, SPP, Concat, Detect]: c1, c2 = c2, args[0] if isinstance(c2, list): c2 = [ch] + c2 elif c2 == 'same': c2 = c1 elif c2 == -1: c2 = [256, 512, 1024, 2048][max(2 + i - len(d['backbone']), 0)] elif c2 == -2: c2 = c1 // 2 elif c2 == -3: c2 = c1 // 3 elif c2 == -4: c2 = c1 // 4 else: c2 = int(c2) args = [c1, c2, *args[1:]] if m in [Bottleneck, SPP]: args.insert(2, n) n = '' elif m is nn.BatchNorm2d: args = [c2] elif m is nn.Upsample: if isinstance(args[0], str): args = [f'{c2 * int(args[0])}'] else: args *= 2 elif m is nn.Linear: args = [nc, args[0]] if n == 'head': args[0] = args[0] * na * (nc + 5) n = '' elif m is Detect: args.append([anchors[i] for i in d['anchor_idx'][f]]) args.append(nc) args.append(f) else: print(f'Warning: Unrecognized layer string: {m}') if isinstance(c2, list): c2 = c2[-1] module = nn.Sequential(*[m(*args) if m is not Detect else Detect(*args[:3]).to(f'cuda:{args[3]}') for m in [m]]) module.nc = nc # attach number of classes to Detect() module.stride = torch.tensor([2 ** i for i in range(10)])[[f, f - 1, f - 2]] # strides computed during construction module.anchor_vec = d['anchor_idx'][f] module.training = False layers.append(module) if n: save.append(n) return nn.Sequential(*layers), sorted(save) def fuse_conv_bn(conv, bn): # https://tehnokv.com/posts/fusing-batchnorm-and-conv/ with torch.no_grad(): # init fusedconv = Conv( conv.in_channels, conv.out_channels, kernel_size=conv.kernel_size, stride=conv.stride, padding=conv.padding, groups=conv.groups, bias=True, dilation=conv.dilation) fusedconv.weight.data = conv.weight.data.clone().reshape( fusedconv.weight.data.shape) # copy conv weights # prepare filters bnmean = bn.running_mean bnstd = torch.sqrt(bn.running_var + bn.eps) if conv.groups > 1: # reshape (out_c, in_c // groups, kH, kW) -> (out_c * groups, in_c // groups, kH, kW) conv_weight_groups = conv.weight.data.reshape( conv.out_channels * conv.groups, -1, conv.kernel_size[0], conv.kernel_size[1]) # reshape bn params (out_c) -> (out_c * groups) bnmean = bnmean.repeat(conv.groups) bnstd = bnstd.repeat(conv.groups) else: conv_weight_groups = conv.weight.data # fuse fusedconv.bias.data = bn.bias.data + (bn.weight.data / bnstd) * (conv.bias.data - bnmean) scale = (bn.weight.data / bnstd) fusedconv.weight.data *= scale.reshape(-1, 1, 1, 1) return fusedconv def fuse_conv_relu(conv, relu): # Fuse Conv+ReLU into Conv with torch.no_grad(): # init fusedconv = Conv( conv.in_channels, conv.out_channels, kernel_size=conv.kernel_size, stride=conv.stride, padding=conv.padding, groups=conv.groups, bias=True, dilation=conv.dilation) fusedconv.weight.data = conv.weight.data.clone().reshape( fusedconv.weight.data.shape) # copy conv weights # fuse fusedconv.bias.data = conv.bias.data fusedconv.weight.data *= relu.inplace_slope.reshape(-1, 1, 1, 1) return fusedconv ``` 6. 在 `train.py` 文件中,添加 ResRep 剪枝方法的调用。 ``` # ResRep pruning if epoch == 100: model.prune(threshold=0.1) print(f'Pruned model to {count_parameters(model)[0] / 1e6:.3g}M parameters') ``` 7. 运行训练命令,开始训练。 ``` python train.py --img 640 --batch 16 --epochs 300 --data coco.yaml --cfg models/yolov5s.yaml --weights '' --name yolov5s_resrep ``` 完成以上步骤后,即可得到应用了 ResRep 剪枝方法的 YOLOv5 6.1 版本的模型,并进行训练。

相关推荐

最新推荐

recommend-type

电源技术中的DC/DC转换器输出电压可变方法

■ 概要  DC/DC转换器应用回路的输出电压要求在外部控制可调,这种情况一般都是用CPU芯片控制的数字电路所需要。... D/A转换器Full Scale:255  D/A转换器输出电压:0V~2.5V  D/A转换器设定:2
recommend-type

vue写h5页面的方法总结

下面就是小编带给大家的如何用vue写h5页面方法操作,希望能够给你们带来一定的帮助,谢谢大家的观看。 1、当拿到设计师给的UI设计图,前端的首要任务...3、方案总结为:根据设备设备像素比设置scale的值,保持视口dev
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB图像处理算法宝典:从理论到实战

![MATLAB图像处理算法宝典:从理论到实战](https://img-blog.csdnimg.cn/20200717112736401.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2d1emhhbzk5MDE=,size_16,color_FFFFFF,t_70) # 1. MATLAB图像处理基础理论 MATLAB图像处理是一种利用MATLAB编程语言进行图像处理的强大工具。它提供了丰富的函数和工具箱,用于图像获取、增强、分
recommend-type

matlab中1/x的非线性规划

在MATLAB中,可以使用非线性规划函数(`fmincon`)来优化一个包含1/x的非线性目标函数。下面是一个简单的例子: ```matlab % 定义目标函数 fun = @(x) 1/x; % 定义约束函数(这里没有约束) nonlcon = []; % 定义初始点 x0 = 1; % 定义优化选项 options = optimoptions('fmincon', 'Display', 'iter'); % 进行非线性规划 [x, fval] = fmincon(fun, x0, [], [], [], [], [], [], nonlcon, options); ``` 在
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB数据可视化黑科技:洞悉数据背后的秘密

![MATLAB数据可视化黑科技:洞悉数据背后的秘密](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB数据可视化的基本原理 MATLAB数据可视化是一种将数据转化为图形表示形式的技术,以帮助人们理解和分析数据。其基本原理包括: - **数据表示:**将原始数据转换为图形元素,如点、线和条形。 - **图形布局:**确定图形元素在绘图区域中的位置和大小。 - **图形美化:**添加标题、标签、颜色和纹理等元素,以增强图形的可读性和美观性。 - **交互性:**允
recommend-type

优化算法计算单位面积年平均输出热功率的代码

计算单位面积年平均输出热功率的代码具体情况取决于你所要解决的问题和需要的数据。然而,我可以给你一个通用的优化算法的框架,你可以根据具体情况进行调整。 首先,你需要明确计算单位面积年平均输出热功率的数学公式或算法。假设你已经有了计算热功率的函数 `calculate_power`,它接受一些输入参数,并返回热功率值。 下面是一个示例的优化算法框架,以最大化单位面积年平均输出热功率为目标: ```python import random def objective_function(params): # 这个函数用于计算目标函数的值 # 根据具体情况,你需要将 params