密度参数·改进k-means算法matlab代码
时间: 2023-09-19 12:07:05 浏览: 102
基于密度峰值的聚类算法的matlab,k-means,DB-SCAN+源代码+文档说明+数据集
5星 · 资源好评率100%
以下是一个使用密度参数改进的k-means算法的MATLAB代码:
```
function [IDX, C] = kmeans_density(X, k, rho)
% kmeans_density: 密度参数改进的k-means算法
% 输入:
% X: n*d的数据矩阵,n为样本数,d为特征维数
% k: 聚类数
% rho: 密度参数
% 输出:
% IDX: n*1的向量,表示每个样本所属的簇
% C: k*d的矩阵,表示每个簇的中心
% 使用样例:
% [IDX, C] = kmeans_density(X, 3, 0.5);
[n, d] = size(X);
IDX = zeros(n, 1);
C = X(1:k, :);
while true
preIDX = IDX;
% 计算每个样本到各个中心的距离
D = pdist2(X, C);
% 计算每个样本到最近中心的距离
[minD, minIdx] = min(D, [], 2);
% 根据密度参数rho选择簇心
for i = 1:k
idx = find(minIdx == i);
if numel(idx) > rho * n
C(i, :) = mean(X(idx, :));
end
end
IDX = minIdx;
% 判断是否收敛
if isequal(IDX, preIDX)
break;
end
end
```
其中,密度参数rho表示每个簇中所包含的样本数与总样本数的比例,如果大于rho的簇才会被更新中心点。
阅读全文