帮我写一个DOS上的汇编LSD代码

时间: 2023-08-20 09:10:30 浏览: 17
LSD(Line Segment Detection)算法是一种图像处理算法,用于检测图像中的线段。下面是一个简单的DOS上的汇编LSD代码示例: ``` .MODEL SMALL .STACK .DATA image DB 32000 DUP(0) ; 存储图像像素数据 lines DB 400 DUP(0) ; 存储检测到的线段数据 nlines DW ? ; 存储检测到的线段数量 .CODE .STARTUP ; 加载图像像素数据到内存中 mov ah, 3Dh mov dx, OFFSET filename int 21h mov bx, ax mov ah, 3Fh mov cx, 32000 mov dx, OFFSET image int 21h ; 调用LSD算法检测线段 mov ax, SEG image mov ds, ax mov ax, SEG lines mov es, ax mov ax, WORD PTR nlines push ax mov ax, 0 push ax mov ax, 200 push ax call lsd ; 将检测到的线段数据保存到文件中 mov ah, 3Ch mov cx, WORD PTR nlines mov dx, OFFSET filename2 int 21h mov bx, ax mov ah, 40h mov cx, 400 mov dx, OFFSET lines int 21h .EXIT ; LSD算法实现 lsd PROC push bp mov bp, sp push es push di push si push bx push cx push dx push ax ; 实现LSD算法的代码... pop ax pop dx pop cx pop bx pop si pop di pop es pop bp ret lsd ENDP END ``` 上面的代码中,首先通过DOS的文件操作函数将图像像素数据加载到内存中,然后调用LSD算法检测线段,并将检测到的线段数据保存到文件中。LSD算法的具体实现在lsd过程中,可以根据具体需求进行实现。

相关推荐

SLAM建图(Simultaneous Localization and Mapping)是指在未知环境中,同时实现机器人的自主定位和环境地图的构建。近年来,SLAM技术在机器人、自动驾驶、虚拟现实等领域得到了广泛应用,成为了计算机视觉和机器人领域的热门研究方向之一。以下是关于SLAM建图的国内外现状: 国外现状: 欧美国家在SLAM领域的研究比较早,已经形成了成熟的技术体系和商业应用。目前,包括英国的Oxford Robotics Institute、美国的MIT、斯坦福大学、加州大学伯克利分校、CMU等知名机构都在SLAM领域有很深入的研究,并且涌现出了很多具有代表性的SLAM算法,如ORB-SLAM、LSD-SLAM、DSO等。 国内现状: 中国在SLAM领域的研究起步较晚,但随着近年来人工智能和机器人领域的快速发展,国内SLAM研究也迅速崛起。目前,国内的SLAM研究机构包括清华大学、中科院自动化所、北航、华中科大等知名高校和科研机构。在算法方面,国内也涌现出了很多优秀的SLAM算法,如LIO-SAM、VINS-Mono、MSCKF等。此外,国内的一些企业如大疆、商汤科技、拓普集团等也在SLAM建图领域进行了深入研究,并提出了一些具有创新性的解决方案。 总体来说,国外在SLAM领域的研究更为成熟,但国内的研究也在快速追赶。未来,随着机器人、自动驾驶等领域的不断发展,SLAM建图技术也将得到更广泛的应用和推广。
### 回答1: LSD (Line Segment Detector) 是一种在计算机视觉领域常用的直线检测算法。在Matlab中,我们可以使用LSD算法的代码来实现直线检测。 首先,我们需要安装并导入LSD算法的Matlab工具箱,例如VLFeat工具箱。 接下来,在Matlab中,我们可以使用vl_lsd函数来调用LSD算法进行直线检测。该函数的输入参数是要进行直线检测的图像,并返回检测到的直线的坐标信息。 具体代码如下所示: matlab % 导入图像 image = imread('example.jpg'); % 转换为灰度图像 grayImage = rgb2gray(image); % 调用LSD算法进行直线检测 [lines, ~] = vl_lsd(single(grayImage)); % 循环遍历每条检测到的直线并绘制 figure; imshow(image); hold on; for i = 1:size(lines, 2) plot([lines(1, i) lines(3, i)], [lines(2, i), lines(4, i)], 'LineWidth', 2, 'Color', 'r'); end hold off; 在这段代码中,我们首先导入了要进行直线检测的图像(这里假设为example.jpg),然后将其转换为灰度图像。接下来调用vl_lsd函数进行直线检测,并将检测到的直线的坐标信息保存在lines变量中。 最后,我们循环遍历每条检测到的直线,并使用plot函数在原始图像上绘制出这些直线。这里设置了线宽为2像素,颜色为红色。 这段代码可以帮助我们实现LSD直线检测,并输出图像中直线的坐标信息。 ### 回答2: 在MATLAB中实现LSD(Line Segment Detector)直线检测算法,可以通过以下步骤进行: 1. 下载LSD的MATLAB实现。 LSD是一种开源的直线检测算法,可以在GitHub上找到其MATLAB实现。可以搜索"LSD-MATLAB"或类似的关键词,找到并下载LSD的MATLAB代码。 2. 导入图像。 在MATLAB中,使用imread函数导入待检测直线的图像。例如,img = imread('image.jpg')。 3. 转换为灰度图像。 对于LSD算法,需要将彩色图像转换为灰度图像。可以使用rgb2gray函数将图像从RGB颜色空间转换到灰度颜色空间。例如,gray_img = rgb2gray(img)。 4. 运行LSD直线检测算法。 使用LSD-MATLAB代码中提供的函数,在灰度图像上运行LSD直线检测算法。例如,lines = lsd(gray_img)。 5. 可选:调整参数。 LSD-MATLAB代码提供了一些可调参数,可以根据需要进行调整。例如,可以调整阈值参数以控制直线检测的灵敏度。 6. 可视化直线。 使用LSD-MATLAB代码中的可视化函数,如线段绘制函数,可以在原始图像上绘制检测到的直线。例如,linesDraw = drawlines(img, lines)。 7. 显示结果。 使用imshow函数显示绘制了直线的图像。例如,imshow(linesDraw)。 通过以上步骤,我们可以在MATLAB中实现LSD直线检测算法,并在图像中检测和可视化直线。需要注意的是,LSD-MATLAB代码的具体用法可能因版本或更新而有所不同,建议参考该代码的文档或说明以了解更多详细信息。
循迹避障小车是一种常见的嵌入式应用场景,下面是一份STM32F103C8T6的循迹避障小车代码,仅供参考: #include "stm32f10x.h" #include "delay.h" #define IN1 GPIO_Pin_0 #define IN2 GPIO_Pin_1 #define IN3 GPIO_Pin_2 #define IN4 GPIO_Pin_3 #define ENA GPIO_Pin_6 #define ENB GPIO_Pin_7 #define LED GPIO_Pin_13 #define LSA GPIO_Pin_4 #define LSB GPIO_Pin_5 #define LSC GPIO_Pin_6 #define LSD GPIO_Pin_7 void GPIO_Configuration(void); void PWM_Configuration(void); void Car_Run(void); void Car_Back(void); void Car_Left(void); void Car_Right(void); void Car_Stop(void); void Car_Adjust(void); int main(void) { GPIO_Configuration(); PWM_Configuration(); while(1) { if(GPIO_ReadInputDataBit(GPIOA, LSA) == 0 && GPIO_ReadInputDataBit(GPIOA, LSB) == 0 && GPIO_ReadInputDataBit(GPIOA, LSC) == 1 && GPIO_ReadInputDataBit(GPIOA, LSD) == 0) { Car_Run(); } else if(GPIO_ReadInputDataBit(GPIOA, LSA) == 0 && GPIO_ReadInputDataBit(GPIOA, LSB) == 1 && GPIO_ReadInputDataBit(GPIOA, LSC) == 1 && GPIO_ReadInputDataBit(GPIOA, LSD) == 0) { Car_Left(); } else if(GPIO_ReadInputDataBit(GPIOA, LSA) == 1 && GPIO_ReadInputDataBit(GPIOA, LSB) == 0 && GPIO_ReadInputDataBit(GPIOA, LSC) == 0 && GPIO_ReadInputDataBit(GPIOA, LSD) == 0) { Car_Left(); } else if(GPIO_ReadInputDataBit(GPIOA, LSA) == 0 && GPIO_ReadInputDataBit(GPIOA, LSB) == 0 && GPIO_ReadInputDataBit(GPIOA, LSC) == 0 && GPIO_ReadInputDataBit(GPIOA, LSD) == 1) { Car_Right(); } else if(GPIO_ReadInputDataBit(GPIOA, LSA) == 0 && GPIO_ReadInputDataBit(GPIOA, LSB) == 0 && GPIO_ReadInputDataBit(GPIOA, LSC) == 1 && GPIO_ReadInputDataBit(GPIOA, LSD) == 1) { Car_Right(); } else if(GPIO_ReadInputDataBit(GPIOA, LSA) == 0 && GPIO_ReadInputDataBit(GPIOA, LSB) == 0 && GPIO_ReadInputDataBit(GPIOA, LSC) == 0 && GPIO_ReadInputDataBit(GPIOA, LSD) == 0) { Car_Adjust(); } else { Car_Stop(); } } } void GPIO_Configuration(void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB, ENABLE); RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE); GPIO_InitStructure.GPIO_Pin = IN1 | IN2 | IN3 | IN4 | ENA | ENB; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = LSA | LSB | LSC | LSD; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOB, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = LED; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOC, &GPIO_InitStructure); } void PWM_Configuration(void) { TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_OCInitTypeDef TIM_OCInitStructure; TIM_TimeBaseStructure.TIM_Period = 999; TIM_TimeBaseStructure.TIM_Prescaler = 71; // 1MHz的计数频率 TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure); TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; TIM_OCInitStructure.TIM_Pulse = 0; TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; TIM_OC1Init(TIM3, &TIM_OCInitStructure); TIM_OC1PreloadConfig(TIM3, TIM_OCPreload_Enable); TIM_OC2Init(TIM3, &TIM_OCInitStructure); TIM_OC2PreloadConfig(TIM3, TIM_OCPreload_Enable); TIM_Cmd(TIM3, ENABLE); } void Car_Run(void) { GPIO_SetBits(GPIOA, IN1); GPIO_ResetBits(GPIOA, IN2); GPIO_SetBits(GPIOA, IN3); GPIO_ResetBits(GPIOA, IN4); TIM_SetCompare1(TIM3, 500); TIM_SetCompare2(TIM3, 500); } void Car_Back(void) { GPIO_ResetBits(GPIOA, IN1); GPIO_SetBits(GPIOA, IN2); GPIO_ResetBits(GPIOA, IN3); GPIO_SetBits(GPIOA, IN4); TIM_SetCompare1(TIM3, 500); TIM_SetCompare2(TIM3, 500); } void Car_Left(void) { GPIO_SetBits(GPIOA, IN1); GPIO_ResetBits(GPIOA, IN2); GPIO_ResetBits(GPIOA, IN3); GPIO_ResetBits(GPIOA, IN4); TIM_SetCompare1(TIM3, 200); TIM_SetCompare2(TIM3, 800); } void Car_Right(void) { GPIO_ResetBits(GPIOA, IN1); GPIO_ResetBits(GPIOA, IN2); GPIO_SetBits(GPIOA, IN3); GPIO_ResetBits(GPIOA, IN4); TIM_SetCompare1(TIM3, 800); TIM_SetCompare2(TIM3, 200); } void Car_Stop(void) { GPIO_ResetBits(GPIOA, IN1); GPIO_ResetBits(GPIOA, IN2); GPIO_ResetBits(GPIOA, IN3); GPIO_ResetBits(GPIOA, IN4); TIM_SetCompare1(TIM3, 0); TIM_SetCompare2(TIM3, 0); } void Car_Adjust(void) { GPIO_SetBits(GPIOA, IN1); GPIO_ResetBits(GPIOA, IN2); GPIO_ResetBits(GPIOA, IN3); GPIO_SetBits(GPIOA, IN4); TIM_SetCompare1(TIM3, 500); TIM_SetCompare2(TIM3, 500); } 这份代码使用了STM32F103C8T6的GPIO和PWM模块,实现了对小车的控制。在GPIO配置函数中,通过配置GPIOA和GPIOB的引脚模式为输出和输入上拉模式,分别控制了小车马达和循迹传感器的输入输出。在PWM配置函数中,使用了TIM3模块实现了PWM信号的输出,从而调节小车的速度和方向。在主函数中,通过读取循迹传感器的输入,来判断小车应该执行的动作,如前进、后退、左转、右转等。同时,也实现了小车的停止和调整功能。
LSD算法是一种用于快速检测图像中直线段的图像处理方法。它通过计算图像中所有点的梯度大小和方向,将梯度方向变化小且相邻的点作为一个连通域,然后根据每一个域的矩形度判断是否需要按照规则将其断开以形成多个矩形度较大的域,最后对生成的所有域做改善和筛选,保留其中满足条件的域,即为最后的直线检测结果。这个算法的优点在于检测速度快,而且无需参数调节,利用错误控制的方法,提高直线检测的准确度。\[3\] 如果你想在MATLAB中使用LSD算法,你可以下载并封装了该算法的代码,然后按照README.md文件中的编译过程进行操作。这样你就可以直接在MATLAB中可视化地显示LSD算法的实际效果了。\[1\] #### 引用[.reference_title] - *1* *2* [直线检测算法 LSD 的相关介绍及其在 OpenCV 和 MATLAB 中的可视化](https://blog.csdn.net/a1138825823/article/details/39552535)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [LSD直线检测MATLAB](https://blog.csdn.net/m0_60115601/article/details/118901766)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

最新推荐

LSD-SLAM 基于直接法的大范围单目同步定位和 地图构建方法.pdf

LSD-SLAM 基于直接法的大范围单目同步定位和 地图构建方法.pdf LSD-SLAM 基于直接法的大范围单目同步定位和 地图构建方法.pdf LSD-SLAM 基于直接法的大范围单目同步定位和 地图构建方法.pdf LSD-SLAM 基于直接法的大...

DeviceSetupStatusProvider.dll

DeviceSetupStatusProvider

MicrosoftEdgeCP.exe

MicrosoftEdgeCP

东莞证券-食品饮料行业疫后复苏之白酒行业专题报告:春意已近,静待花开-230426.pdf

东莞证券-食品饮料行业疫后复苏之白酒行业专题报告:春意已近,静待花开-230426

"处理多边形裁剪中的退化交点:计算机图形学中的重要算法问题"

计算机图形:X 2(2019)100007技术部分裁剪具有退化交点的简单多边形6Erich L Fostera, Kai Hormannb, Romeo Traian PopacaCarnegie Robotics,LLC,4501 Hat Field Street,Pittsburgh,PA 15201,USAb瑞士卢加诺6904,Via Giuseppe Bu 13,意大利Svizzera大学信息学院机械工程和机械学专业,布氏动力学专业,独立自主专业,布氏060042专业,罗马尼亚Ar ticlei n f o ab st ract文章历史记录:收到2019年2019年5月29日修订2019年6月3日接受在线提供2019年MSC:68U05保留字:多边形裁剪退化交点多边形裁剪在许多领域都是一种常见的操作,包括计算机图形学、CAD和GIS。因此,高效、通用的多边形裁剪算法具有重要意义。Greiner和Hormann(1998)提出了一种简单且时间效率高的算法,可以裁剪任意多边形,包括凹多边形和带孔的自相交多边形。然而,Greiner-Hormann算法不能正确处理退化相交的情况,而不需要扰�

动态规划与最大子数组和问题:如何高效解决序列中的最大子数组和

## 1. 引言 ### 1.1 背景介绍 动态规划是一种解决复杂问题的算法设计方法,它通过将问题分解成子问题,并解决每个子问题,从而逐步构建最优解。在计算机科学和算法领域,动态规划被广泛应用于优化问题的求解。 ### 1.2 动态规划在算法中的重要性 动态规划不仅仅是一种算法,更是一种解决问题的思维方式。它通过保存子问题的解,避免了重复计算,从而在时间和空间上实现了效率的提升。这种思想在很多经典算法问题中都发挥着关键作用,其中之一便是最大子数组和问题。 ### 1.3 最大子数组和问题的实际应用场景 最大子数组和问题是在一个数组中找到一个具有最大和的连续子数组的问题。这个问题在实际中有

devc++6.3大小写字母转换

根据提供的引用内容,无法直接回答关于 Dev-C++ 6.3 的大小写字母转换问题。Dev-C++ 是一个集成开发环境(IDE),用于编写和运行 C/C++ 程序。如果您想要实现大小写字母转换,可以使用 C++ 标准库中的 toupper() 和 tolower() 函数。这两个函数分别将字符转换为大写和小写形式。以下是一个简单的示例程序: ```c++ #include <iostream> #include <string> using namespace std; int main() { string str = "Hello, World!"; for (int

基于结构化情报分析系统的数据可视化研究毕业设计.doc

基于结构化情报分析系统的数据可视化研究毕业设计.doc

"大数据科学与管理:内涵、方法、技术与发展"

数据科学与管理1(2021)32研究文章数据科学:内涵、方法、技术与发展徐宗本a,*,唐念生b,陈旭c,程学奇daXi交通大学数学与统计学院b云南大学数学与统计学院,中国昆明650091c渥太华大学数学与统计系,渥太华,K1N 6N5,加拿大d中国科学院计算技术研究所,北京,100190A R T I C L E I N F O保留字:数据科学数据科学方法论大数据技术方向A B S T R A C T大数据的快速发展孕育了数据科学。了解和掌握大数据价值生成的内在规律,对于推进数字化,促进数据科学与管理科学、计算机科学等学科的融合具有重要意义。在这项研究中,我们讨论了数据科学对科学技术发展和社会进步的重要性在阐释数据科学内涵的基础上,介绍了数据科学的定义,并通过总结相关学科的主要进展回顾了数据科学的形成我们还讨论了数据科学的研究方法,发展模式最后,提出了数�

动态规划入门:如何有效地识别问题并构建状态转移方程?

### I. 引言 #### A. 背景介绍 动态规划是计算机科学中一种重要的算法思想,广泛应用于解决优化问题。与贪婪算法、分治法等不同,动态规划通过解决子问题的方式来逐步求解原问题,充分利用了子问题的重叠性质,从而提高了算法效率。 #### B. 动态规划在计算机科学中的重要性 动态规划不仅仅是一种算法,更是一种设计思想。它在解决最短路径、最长公共子序列、背包问题等方面展现了强大的能力。本文将深入介绍动态规划的基本概念、关键步骤,并通过实例演练来帮助读者更好地理解和运用这一算法思想。 --- ### II. 动态规划概述 #### A. 什么是动态规划? 动态规划是一种将原问题拆解