transformer提取特征实例
时间: 2023-09-20 08:09:33 浏览: 93
以下是使用Transformer模型提取特征的示例代码:
首先,导入必要的库:
```python
import torch
import torch.nn as nn
from transformers import AutoTokenizer, AutoModel
```
然后,加载预训练的Transformer模型和对应的tokenizer:
```python
model_name = 'bert-base-uncased'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
```
接下来,定义输入文本:
```python
text = "The quick brown fox jumps over the lazy dog."
```
使用tokenizer将文本转换为模型输入所需的格式:
```python
inputs = tokenizer(text, return_tensors='pt')
```
其中,'pt'表示返回PyTorch tensor格式的输入。
最后,使用模型提取特征:
```python
outputs = model(**inputs)
last_hidden_state = outputs.last_hidden_state
```
其中,last_hidden_state是最后一层的隐藏状态,即提取的特征。可以通过修改outputs的参数来获得其他层的隐藏状态或者其他输出。
完整代码如下:
```python
import torch
import torch.nn as nn
from transformers import AutoTokenizer, AutoModel
model_name = 'bert-base-uncased'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
text = "The quick brown fox jumps over the lazy dog."
inputs = tokenizer(text, return_tensors='pt')
outputs = model(**inputs)
last_hidden_state = outputs.last_hidden_state
```
阅读全文