def init_context(context): context.logger.info("Init context... 0%") model_path = "yolov8m-seg.pt" # YOLOV8模型放在nuclio目录下构建 model = YOLO(model_path) # Read the DL model context.user_data.model = model context.logger.info("Init context...100%") def handler(context, event): context.logger.info("Run yolo-v8-seg model") data = event.body buf = io.BytesIO(base64.b64decode(data["image"])) threshold = float(data.get("threshold", 0.35)) context.user_data.model.conf = threshold image = Image.open(buf) yolo_results = context.user_data.model(image, conf=threshold)[0] labels = yolo_results.names detections = sv.Detections.from_yolov8(yolo_results) detections = detections[detections.confidence > threshold] masks = detections.xy conf = detections.confidence class_ids = detections.class_id results = [] if masks.shape[0] > 0: for label, score, mask in zip(class_ids, conf, masks): # 将mask转换为轮廓 contours, _ = cv2.findContours(mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for contour in contours: points = [] for point in contour: x = point[0][0] y = point[0][1] points.append([x, y]) results.append({ "confidence": str(score), "label": labels.get(label, "unknown"), "points": points, "type": "polygon",})
时间: 2024-02-14 11:29:51 浏览: 167
这段代码是一个函数`handler`,它接受一个`context`和一个`event`作为参数。在初始化上下文时,加载了一个YOLOV8模型,并将其存储在`context.user_data.model`中。然后,从`event`中获取图像数据,并对其进行处理。通过调用模型的`__call__`方法,传入图像和阈值参数进行预测。然后,从预测结果中提取标签、置信度、掩码等信息,并将其添加到结果列表中。最后,返回结果列表。
你有关于这段代码的具体问题吗?
相关问题
import json import base64 from PIL import Image import io from ultralytics import YOLO import supervision as sv def init_context(context): context.logger.info("Init context... 0%") model_path = "yolov8m.pt" # YOLOV8模型放在nuclio目录下构建 model = YOLO(model_path) # Read the DL model context.user_data.model = model context.logger.info("Init context...100%") def handler(context, event): context.logger.info("Run yolo-v8 model") data = event.body buf = io.BytesIO(base64.b64decode(data["image"])) threshold = float(data.get("threshold", 0.35)) context.user_data.model.conf = threshold image = Image.open(buf) yolo_results = context.user_data.model(image, conf=threshold)[0] labels = yolo_results.names detections = sv.Detections.from_yolov8(yolo_results) detections = detections[detections.confidence > threshold] boxes = detections.xyxy conf = detections.confidence class_ids = detections.class_id results = [] if boxes.shape[0] > 0: for label, score, box in zip(class_ids, conf, boxes): xtl = int(box[0]) ytl = int(box[1]) xbr = int(box[2]) ybr = int(box[3]) results.append({ "confidence": str(score), "label": labels.get(label, "unknown"), "points": [xtl, ytl, xbr, ybr], "type": "rectangle",}) return context.Response(body=json.dumps(results), headers={}, content_type='application/json', status_code=200)
这段代码是一个处理函数,根据输入的图像进行OLOv8 目标检测,并返回检测结果。
首先,在 `init_context` 函数中,设置了 YOLOv8 模型的路径并加载模型。这个函数在每次函数实例化时会被调用。
然后,在 `handler` 函数中,接收到 HTTP 请求的事件数据。根据传入的图片数据和阈值,进行目标检测。以下是代码的主要步骤:
1. 解码并读取传入的图片数据。
2. 设置阈值,并将其赋值给 YOLOv8 模型的 `conf` 属性。
3. 使用 PIL 库中的 `Image` 类打开图像。
4. 将图像传入 YOLOv8 模型进行目标检测,得到结果 `yolo_results`。
5. 从 `yolo_results` 中获取标签和检测结果。
6. 根据阈值过滤掉置信度低于阈值的检测结果。
7. 将检测框的坐标、置信度、标签等信息整理为字典,并添加到 `results` 列表中。
8. 将结果列表转换为 JSON 字符串作为 HTTP 响应返回。
可以看出,这段代码使用了 `ultralytics` 库中的 YOLOv8 模型进行目标检测,并使用了 `supervision` 库来处理检测结果。返回的结果是一个 JSON 字符串,包含了每个检测结果的置信度、标签和边界框坐标等信息。
YOLOv8-pose代码
### YOLOv8-Pose 代码实现与示例
#### 下载 COCO 数据集并查看标注格式
为了获取 `coco8-pose` 数据集,可以访问官方提供的链接,并按照说明下载数据集。此数据集中包含了用于姿态估计的关键点位置信息以及图像文件。
```bash
# 使用 wget 或 curl 命令来下载数据集
wget https://path_to_coco_dataset/coco8-pose.zip
unzip coco8-pose.zip -d ./datasets/
```
通过上述命令可获得训练所需的图片和对应的标签文件[^2]。
#### 安装依赖库
确保安装了必要的 Python 库以便运行模型:
```bash
pip install ultralytics torch numpy opencv-python tensorrt onnx
```
这些包对于加载模型、处理输入输出数据至关重要。
#### 加载预训练权重并定义模型结构
下面是一个简单的例子展示如何加载预训练好的 YOLOv8-Pose 权重并对新图象执行推理操作:
```python
from ultralytics import YOLO
import cv2
import numpy as np
model_path = "yolov8_pose.pt"
image_path = "./datasets/images/000000123.jpg"
def preprocess_image(image, target_size=(640, 640)):
"""Resize and normalize the input image."""
resized_img = cv2.resize(image, target_size)
normalized_img = (resized_img / 255).astype(np.float32)[np.newaxis,...].transpose(0, 3, 1, 2)
return normalized_img
# Load pre-trained model weights
model = YOLO(model_path)
img = cv2.imread(image_path)
input_tensor = preprocess_image(img)
results = model(input_tensor)
print(results.pandas().xywh[0]) # Print bounding boxes with keypoints coordinates.
```
这段脚本展示了怎样读取一张测试照片,对其进行适当调整大小及标准化之后送入网络得到预测结果[^1]。
#### TensorRT 集成支持
为了让 TensorRT 支持 YOLOv8-Pose,在完成以上步骤的基础上还需要额外配置 ONNX 文件转换过程:
```python
import tensorrt as trt
import pycuda.driver as cuda
import pycuda.autoinit
from polygraphy.backend.onnx.loader import fold_constants
from polygraphy.comparator import DataLoader, Comparator
from polygraphy.runner import OnnxrtRunner, TrtRunner
onnx_model_path = 'yolov8_pose.onnx'
TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
builder = trt.Builder(TRT_LOGGER)
network = builder.create_network(flags=1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
parser = trt.OnnxParser(network, TRT_LOGGER)
with open(onnx_model_path, 'rb') as f:
parser.parse(f.read())
engine = builder.build_cuda_engine(network)
context = engine.create_execution_context()
```
这里介绍了创建一个基于 TensorRT 的引擎实例的方法,这一步骤允许更高效的硬件加速推断性能。
阅读全文
相关推荐
















