train_dataset = LegacyPPIDataset(mode='train') valid_dataset = LegacyPPIDataset(mode='valid') test_dataset = LegacyPPIDataset(mode='test') train_dataloader = DataLoader(train_dataset, batch_size=batch_size, collate_fn=collate) valid_dataloader = DataLoader(valid_dataset, batch_size=batch_size, collate_fn=collate) test_dataloader = DataLoader(test_dataset, batch_size=batch_size, collate_fn=collate) n_classes = train_dataset._labels.shape[1] num_feats = train_dataset.features.shape[1]
时间: 2024-04-28 14:22:20 浏览: 132
这段代码是用来加载和处理数据集的。其中`LegacyPPIDataset`是一个自定义的数据集类,用于加载PPID(Protein-Protein Interaction)数据集。`mode`参数指定了数据集的模式,可以是训练集、验证集或测试集。`DataLoader`是一个PyTorch中用于批量处理数据的工具,将数据集分成一批一批的,方便模型训练。`batch_size`参数指定了每个批次的大小。`collate`参数是一个自定义的函数,用于将数据集中的样本转换成模型可以处理的格式。`n_classes`和`num_feats`分别表示类别数和特征数量。这段代码的作用是将数据集加载到内存中,方便模型训练。
相关问题
LDAM损失函数pytorch代码如下:class LDAMLoss(nn.Module): def init(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).init() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s if weight is not None: weight = torch.FloatTensor(weight).cuda() self.weight = weight self.cls_num_list = cls_num_list def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(1,0)) # 0,1 batch_m = batch_m.view((16, 1)) # size=(batch_size, 1) (-1,1) x_m = x - batch_m output = torch.where(index, x_m, x) if self.weight is not None: output = output * self.weight[None, :] target = torch.flatten(target) # 将 target 转换成 1D Tensor logit = output * self.s return F.cross_entropy(logit, target, weight=self.weight) 模型部分参数如下:# 设置全局参数 model_lr = 1e-5 BATCH_SIZE = 16 EPOCHS = 50 DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') use_amp = True use_dp = True classes = 7 resume = None CLIP_GRAD = 5.0 Best_ACC = 0 #记录最高得分 use_ema=True model_ema_decay=0.9998 start_epoch=1 seed=1 seed_everything(seed) # 数据增强 mixup mixup_fn = Mixup( mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None, prob=0.1, switch_prob=0.5, mode='batch', label_smoothing=0.1, num_classes=classes) # 读取数据集 dataset_train = datasets.ImageFolder('/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/train', transform=transform) dataset_test = datasets.ImageFolder("/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/valid", transform=transform_test)# 导入数据 train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True,drop_last=True) test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False) 帮我用pytorch实现模型在模型训练中使用LDAM损失函数
好的,以下是使用LDAM损失函数训练模型的Pytorch代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from torchvision import datasets, transforms
from ldam_loss import LDAMLoss
# 定义模型
class MyModel(nn.Module):
def __init__(self, num_classes):
super(MyModel, self).__init__()
self.num_classes = num_classes
self.features = nn.Sequential(
nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(32),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
)
self.classifier = nn.Sequential(
nn.Linear(128 * 4 * 4, 256),
nn.ReLU(inplace=True),
nn.Linear(256, num_classes),
)
def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x
# 设置超参数
model_lr = 1e-4
BATCH_SIZE = 16
EPOCHS = 50
DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
use_amp = True
use_dp = True
classes = 7
resume = None
CLIP_GRAD = 5.0
Best_ACC = 0
use_ema = True
model_ema_decay = 0.9998
start_epoch = 1
seed = 1
# 设置随机种子
def seed_everything(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
seed_everything(seed)
# 定义数据增强
transform = transforms.Compose([
transforms.Resize(224),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(10),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
transform_test = transforms.Compose([
transforms.Resize(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
# 定义数据集
dataset_train = datasets.ImageFolder('/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/train', transform=transform)
dataset_test = datasets.ImageFolder("/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/valid", transform=transform_test)
# 定义数据加载器
train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True, drop_last=True)
test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False)
# 定义模型及优化器
model = MyModel(num_classes=classes).to(DEVICE)
optimizer = torch.optim.Adam(model.parameters(), lr=model_lr)
# 使用LDAM损失函数
cls_num_list = [dataset_train.targets.count(i) for i in range(classes)]
criterion = LDAMLoss(cls_num_list=cls_num_list, max_m=0.5, weight=None, s=30)
# 训练模型
for epoch in range(start_epoch, EPOCHS+1):
model.train()
for i, (data, target) in enumerate(train_loader):
data, target = data.to(DEVICE), target.to(DEVICE)
mixup_data, mixup_target = mixup_fn(data, target) # 数据增强
optimizer.zero_grad()
output = model(mixup_data)
loss = criterion(output, mixup_target)
if use_dp:
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD)
else:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), CLIP_GRAD)
optimizer.step()
if use_ema:
ema_model = ModelEMA(model, decay=model_ema_decay)
ema_model.update(model)
else:
ema_model = None
test_acc = test(model, test_loader, DEVICE)
if test_acc > Best_ACC:
Best_ACC = test_acc
save_checkpoint({
'epoch': epoch,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
'Best_ACC': Best_ACC,
}, is_best=True)
```
LDAM损失函数pytorch代码如下:class LDAMLoss(nn.Module): def init(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).init() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s if weight is not None: weight = torch.FloatTensor(weight).cuda() self.weight = weight self.cls_num_list = cls_num_list def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(1,0)) # 0,1 batch_m = batch_m.view((16, 1)) # size=(batch_size, 1) (-1,1) x_m = x - batch_m output = torch.where(index, x_m, x) if self.weight is not None: output = output * self.weight[None, :] target = torch.flatten(target) # 将 target 转换成 1D Tensor logit = output * self.s return F.cross_entropy(logit, target, weight=self.weight) 模型部分参数如下:# 设置全局参数 model_lr = 1e-5 BATCH_SIZE = 16 EPOCHS = 50 DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') use_amp = True use_dp = True classes = 7 resume = None CLIP_GRAD = 5.0 Best_ACC = 0 #记录最高得分 use_ema=True model_ema_decay=0.9998 start_epoch=1 seed=1 seed_everything(seed) # 数据增强 mixup mixup_fn = Mixup( mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None, prob=0.1, switch_prob=0.5, mode='batch', label_smoothing=0.1, num_classes=classes) # 读取数据集 dataset_train = datasets.ImageFolder('/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/train', transform=transform) dataset_test = datasets.ImageFolder("/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/valid", transform=transform_test) 帮我用pytorch实现模型在模型训练中使用LDAM损失函数
好的,下面是使用LDAM损失函数训练模型的代码:
```python
import torch.optim as optim
from torch.optim.lr_scheduler import CosineAnnealingLR
from torch.utils.data import DataLoader
# 定义LDAM损失函数
class LDAMLoss(nn.Module):
def __init__(self, cls_num_list, max_m=0.5, weight=None, s=30):
super(LDAMLoss, self).__init__()
m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list))
m_list = m_list * (max_m / np.max(m_list))
m_list = torch.cuda.FloatTensor(m_list)
self.m_list = m_list
assert s > 0
self.s = s
if weight is not None:
weight = torch.FloatTensor(weight).cuda()
self.weight = weight
self.cls_num_list = cls_num_list
def forward(self, x, target):
index = torch.zeros_like(x, dtype=torch.uint8)
index_float = index.type(torch.cuda.FloatTensor)
batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(1,0)) # 0,1
batch_m = batch_m.view((x.size(0), 1)) # size=(batch_size, 1)
x_m = x - batch_m
output = torch.where(index, x_m, x)
if self.weight is not None:
output = output * self.weight[None, :]
target = torch.flatten(target) # 将 target 转换成 1D Tensor
logit = output * self.s
return F.cross_entropy(logit, target, weight=self.weight)
# 定义模型
model = models.resnet18(pretrained=True)
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, classes)
model.to(DEVICE)
# 定义优化器和学习率调整器
optimizer = optim.Adam(model.parameters(), lr=model_lr)
scheduler = CosineAnnealingLR(optimizer, T_max=EPOCHS, eta_min=1e-6)
# 定义LDAM损失函数
cls_num_list = [len(dataset_train[dataset_train.targets == t]) for t in range(classes)]
criterion = LDAMLoss(cls_num_list)
# 定义数据加载器
train_loader = DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True, num_workers=4, pin_memory=True)
test_loader = DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False, num_workers=4, pin_memory=True)
# 训练模型
best_acc = 0.0
for epoch in range(start_epoch, EPOCHS + 1):
model.train()
train_loss = 0.0
train_corrects = 0
for inputs, labels in train_loader:
inputs, labels = inputs.to(DEVICE), labels.to(DEVICE)
if use_dp:
inputs, labels = dp(inputs, labels)
if use_amp:
with amp.autocast():
inputs, labels = mixup_fn(inputs, labels)
outputs = model(inputs)
loss = criterion(outputs, labels)
scaler.scale(loss).backward()
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD)
scaler.step(optimizer)
scaler.update()
else:
inputs, labels_a, labels_b, lam = mixup_fn(inputs, labels)
outputs = model(inputs)
loss = mixup_criterion(criterion, outputs, labels_a, labels_b, lam)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD)
optimizer.step()
optimizer.zero_grad()
train_loss += loss.item() * inputs.size(0)
_, preds = torch.max(outputs, 1)
train_corrects += torch.sum(preds == labels.data)
train_loss /= len(dataset_train)
train_acc = train_corrects.double() / len(dataset_train)
model.eval()
test_loss = 0.0
test_corrects = 0
with torch.no_grad():
for inputs, labels in test_loader:
inputs, labels = inputs.to(DEVICE), labels.to(DEVICE)
outputs = model(inputs)
loss = criterion(outputs, labels)
test_loss += loss.item() * inputs.size(0)
_, preds = torch.max(outputs, 1)
test_corrects += torch.sum(preds == labels.data)
test_loss /= len(dataset_test)
test_acc = test_corrects.double() / len(dataset_test)
# 更新最佳模型
if test_acc > best_acc:
if use_ema:
ema_model.load_state_dict(model.state_dict())
best_acc = test_acc
# 更新学习率
scheduler.step()
# 打印训练结果
print('Epoch [{}/{}], Train Loss: {:.4f}, Train Acc: {:.4f}, Test Loss: {:.4f}, Test Acc: {:.4f}'.format(
epoch, EPOCHS, train_loss, train_acc, test_loss, test_acc))
```
阅读全文