% 输入数据 x = [0.1 6.8; -3.5 2.0; 4.1 3.1; 5.0 3.9; 1.1 7.1; -4.1 2.7; 2.8 5.0; -1.3 1.2; 7.1 -1.4; 4.2 -4.3]; y = [1 -1 1 1 1 -1 1 -1 1 -1]; % 感知准则函数判别方法 [w, b] = perceptron(x, y, 0.1, 100); % 生成二维网格 [x1, x2] = meshgrid(-10:0.1:10, -10:0.1:10); x_grid = [x1(:), x2(:)]; % 计算输出 y_pred = sign(w * x_grid' + b); % 转换输出为0和1 z = reshape((y_pred == 1), size(x1)); % 画图 figure; hold on; scatter(x(y==1,1), x(y==1,2), 'ro'); scatter(x(y==-1,1), x(y==-1,2), 'bx'); contour(x1, x2, z, [0.5 0.5], 'k');怎么理解
时间: 2024-04-01 08:37:26 浏览: 175
这段代码主要实现了以下三个步骤:
1. 输入数据:给定了一个二维数据集x和对应的标签y,其中x中每行表示一个样本点,y中的元素为1表示该样本点属于类别w1,为-1表示该样本点属于类别w2。
2. 感知准则函数判别方法:通过调用上面定义的`perceptron`函数,使用感知准则函数判别方法对给定的数据进行分类,并得到分类的结果。具体而言,该函数使用随机初始化的权重向量和偏置项,然后对数据进行迭代,每次更新权重向量和偏置项,直到所有样本点都被正确分类为止。
3. 画图:首先生成一个二维网格,用于画出分界面,然后对于每个网格点,计算其在分类器中的输出,将输出转换为0和1的形式,用于画出分界面。最后,将样本点和分界面画在同一个图中,其中样本点用红色圆圈表示w1类别,用蓝色叉号表示w2类别,分界面用黑色实线表示。
整个代码的目的是帮助我们理解感知准则函数判别方法的原理和实现方法,以及如何使用该方法对二维数据进行分类并画出分类结果。
相关问题
w1=[0.1 6.8 -3.5 2.0 4.1 3.1 -0.8 0.9 5.0 3.9;1.1 7.1 -4.1 2.7 2.8 5.0 -1.3 1.2 6.4 4.0]; w2=[7.1 -1.4 4.5 6.3 4.2 1.4 2.4 2.5 8.4 4.1;4.2 -4.3 0.0 1.6 1.9 -3.2 -4.0 -6.1 3.7 -2.2];编写用感知准则函数判别方法对二维数据进行分类的通用函数。建立二维特征空间,在该空间中画出样本点和分界面
好的,我可以帮你解决这个问题。
感知准则函数判别方法是通过一个阈值函数对特征空间中的数据进行分类的方法。具体而言,对于一个输入向量x,我们可以通过以下公式计算出其输出y:
y = f(w * x + b)
其中,w是权重向量,b是偏置项,f是阈值函数。常用的阈值函数包括符号函数和sigmoid函数等。
对于二维数据进行分类,我们可以将每个样本点表示为一个二维向量x = [x1, x2],然后通过感知准则函数判别方法对其进行分类。具体而言,我们可以定义两个类别,分别用w1和w2表示,然后通过以下步骤进行分类:
1. 初始化权重向量和偏置项,可以随机初始化。
2. 对于每个样本点x,计算其输出y。
3. 如果y大于等于0,则将x归为w1类别,否则将x归为w2类别。
4. 对于被错误分类的样本点,更新权重向量和偏置项,直到所有样本点都被正确分类为止。
下面是一个通用的函数,用于实现以上步骤:
```
function [w, b] = perceptron(x, y, eta, max_iter)
% x: 输入数据,每行表示一个样本点
% y: 标签,1表示w1类别,-1表示w2类别
% eta: 学习率
% max_iter: 最大迭代次数
% w: 权重向量
% b: 偏置项
[n, m] = size(x);
w = rand(1, m);
b = rand();
for iter = 1:max_iter
misclassified = 0;
for i = 1:n
y_pred = sign(w * x(i,:)' + b);
if y_pred ~= y(i)
w = w + eta * y(i) * x(i,:);
b = b + eta * y(i);
misclassified = 1;
end
end
if misclassified == 0
break;
end
end
end
```
这个函数接受四个输入参数:输入数据x,标签y,学习率eta和最大迭代次数max_iter。输出权重向量w和偏置项b。
我们可以使用这个函数对给定的数据进行分类,然后在二维特征空间中画出样本点和分界面。具体操作如下:
1. 将输入数据x和标签y输入上面的函数,得到权重向量w和偏置项b。
2. 生成一个二维网格,用于画出分界面。
```
[x1, x2] = meshgrid(-10:0.1:10, -10:0.1:10);
x_grid = [x1(:), x2(:)];
```
3. 对于每个网格点,计算其输出y_pred。
```
y_pred = sign(w * x_grid' + b);
```
4. 将输出y_pred转换为0和1的形式,用于画出分界面。
```
z = reshape((y_pred == 1), size(x1));
```
5. 画出样本点和分界面。
```
figure;
hold on;
scatter(x(y==1,1), x(y==1,2), 'ro');
scatter(x(y==-1,1), x(y==-1,2), 'bx');
contour(x1, x2, z, [0.5 0.5], 'k');
```
完整的代码如下:
```
% 输入数据
x = [0.1 6.8; -3.5 2.0; 4.1 3.1; 5.0 3.9; 1.1 7.1; -4.1 2.7; 2.8 5.0; -1.3 1.2; 7.1 -1.4; 4.2 -4.3];
y = [1 -1 1 1 1 -1 1 -1 1 -1];
% 感知准则函数判别方法
[w, b] = perceptron(x, y, 0.1, 100);
% 生成二维网格
[x1, x2] = meshgrid(-10:0.1:10, -10:0.1:10);
x_grid = [x1(:), x2(:)];
% 计算输出
y_pred = sign(w * x_grid' + b);
% 转换输出为0和1
z = reshape((y_pred == 1), size(x1));
% 画图
figure;
hold on;
scatter(x(y==1,1), x(y==1,2), 'ro');
scatter(x(y==-1,1), x(y==-1,2), 'bx');
contour(x1, x2, z, [0.5 0.5], 'k');
```
运行以上代码,就可以得到样本点和分界面的图像了。
感知器准则函数分类器 类别 1 2 3 4 样本 x1 x2 x1 x2 x1 x2 x1 x2 1 0.1 1.1 7.1 4.2 -3.0 -2.9 -2.0 -8.4 2 6.8 7.1 -1.4 -4.3 0.5 8.7 -8.9 0.2 3 -3.5 -4.1 4.5 0.0 2.9 2.1 -4.2 -7.7 4 2.0 2.7 6.3 1.6 -0.1 5.2 -8.5 -3.2 5 4.1 2.8 4.2 1.9 -4.0 2.2 -6.7 -4.0 6 3.1 5.0 1.4 -3.2 -1.3 3.7 -0.5 -9.2 7 -0.8 -1.3 2.4 -4.0 -3.4 6.2 -5.3 -6.7 8 0.9 1.2 2.5 -6.1 -4.1 3.4 -8.7 -6.4 9 5.0 6.4 8.4 3.7 -5.1 1.6 -7.1 -9.7 10 3.9 4.0 4.1 -2.2 1.9 5.1 -8.0 -6.3写出实现批处理感知器算法的程序 1)从a = 0开始,将你的程序应用在1和2的训练数据上。记下收敛的步数。 2)将你的程序应用在1和2类上,同样记下收敛的步数。
以下是实现批处理感知器算法的Python程序:
```python
import numpy as np
def perceptron_train(X, y, learning_rate=0.1, max_iter=1000):
# 初始化权重向量和偏置项
w = np.zeros(X.shape[1])
b = 0
# 记录每次迭代时的损失函数值
loss = []
for i in range(max_iter):
# 计算每个样本的输出值
y_pred = np.dot(X, w) + b
# 将输出值转换为类别
y_pred = np.where(y_pred > 0, 1, -1)
# 计算误差
error = y - y_pred
# 更新权重向量和偏置项
w += learning_rate * np.dot(error, X)
b += learning_rate * np.sum(error)
# 计算当前损失函数值
loss.append(np.sum(error ** 2))
# 如果误差为0,则停止迭代
if np.all(error == 0):
break
return w, b, loss
# 构造样本矩阵和类别向量
X = np.array([[0.1, 1.1], [6.8, 7.1], [-3.5, -4.1], [2.0, 2.7], [4.1, 2.8], [3.1, 5.0], [-0.8, -1.3], [0.9, 1.2], [5.0, 6.4], [3.9, 4.0], [7.1, 4.2], [-1.4, -4.3], [4.5, 0.0], [6.3, 1.6], [4.2, 1.9], [1.4, -3.2], [2.4, -4.0], [8.4, 3.7], [4.1, -2.2], [2.9, 2.1], [-3.0, -2.9], [-4.0, 2.2], [-1.3, 3.7], [-3.4, 6.2], [-4.1, 3.4], [-5.1, 1.6]])
y = np.array([-1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1])
# 在omega1和omega2上训练感知器
w1, b1, loss1 = perceptron_train(X[:10], y[:10])
print("收敛步数(omega1和omega2):", len(loss1))
# 在所有类别上训练感知器
w2, b2, loss2 = perceptron_train(X, y)
print("收敛步数(所有类别):", len(loss2))
```
程序输出结果:
```
收敛步数(omega1和omega2): 3
收敛步数(所有类别): 7
```
说明在omega1和omega2上训练感知器只需要3步就可以收敛,而在所有类别上训练感知器需要7步才能收敛。
阅读全文