给出以上代码中实现 BP 算法的梯度更新的backpropagation函数完整代码
时间: 2024-09-11 10:09:48 浏览: 39
在Python中实现BP(反向传播)算法通常是在深度学习或神经网络库中进行的,比如TensorFlow、PyTorch或Keras。这里我会提供一个基本的示例,使用numpy库,因为它是轻量级且适合教学用途的。
```python
import numpy as np
def sigmoid(x):
return 1 / (1 + np.exp(-x))
def derivative_sigmoid(x):
return x * (1 - x)
class Neuron:
def __init__(self, input_size, weights=None):
self.weights = weights if weights is not None else np.random.randn(input_size)
self.bias = 0.0
def forward(self, inputs):
z = np.dot(inputs, self.weights) + self.bias
self.output = sigmoid(z)
return self.output
class NeuralNetwork:
def __init__(self, layers, learning_rate=0.01):
self.layers = layers
self.weights = [np.random.randn(layer, layer-1) for layer in layers[1:]]
self.biases = [np.zeros((layer, 1)) for layer in layers[1:]]
self.learning_rate = learning_rate
def backpropagation(self, X, y, output_node_index):
m = X.shape[0]
# Forward pass
activations = [X]
zs = []
outputs = []
for i, (weights, bias) in enumerate(zip(self.weights, self.biases)):
z = np.dot(activations[i], weights) + bias
zs.append(z)
activation = sigmoid(z)
activations.append(activation)
outputs.append(activation)
# Error calculation
delta_output = (outputs[-1] - y) * derivative_sigmoid(outputs[-1])
deltas = [None] * len(activations)
# Backward pass
for i in range(len(activations)-1, 0, -1):
delta = delta_output * derivative_sigmoid(activations[i])
deltas[i-1] = delta
delta_output = np.dot(delta, self.weights[i].T)
# Update weights and biases
for i, (delta, weight, bias) in enumerate(zip(deltas, self.weights[:-1], self.biases[:-1])):
dw = (1/m) * np.dot(activations[i].T, delta)
db = (1/m) * np.sum(delta, axis=0, keepdims=True)
self.weights[i] -= self.learning_rate * dw
self.biases[i] -= self.learning_rate * db
# 使用示例
nn = NeuralNetwork([2, 3, 1]) # 假设我们有一个有两层的网络,第一层3个节点,第二层1个输出节点
inputs = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
targets = np.array([[0], [1], [1], [0]])
for _ in range(1000): # 进行多次训练
nn.backpropagation(inputs, targets, output_node_index=nn.layers[-1]-1)
```
这个例子展示了如何创建一个简单的神经网络并用BP算法进行梯度更新。在这个代码中,我们定义了前向传播、误差计算、反向传播以及权重和偏置的更新步骤。`backpropagation`函数是核心部分,它根据给定的输入和标签进行训练。
阅读全文