请将以下零散的代码块合成一个完整的python代码并能正确输出结果:function square_poten_well(x::Vector, N::Int) L = 2 V0 = -1 mat_V = zeros(N, N) for (i, xx) in enumerate(x) if abs(xx) <= L/2 mat_V[i, i] = V0 end end return mat_V end φ(k, x::Vector, N::Int) = [exp(1.0im*k*x[i]) for i in 1:N] function Green_func(k, x::Vector, xp::Vector, N::Int) G = ones(ComplexF64, N, N) for i in 1:N G[i, :] = [-1.0im / k * exp(1.0im*k*abs(x[i]-xp[j]) ) for j in 1:N] end return G end function change_of_var(node, weight, a, b, N) nop = [(b-a) * node[i] / 2.0 + (a+b) / 2.0 for i in 1:N] wp = [(b-a) / 2.0 * weight[i] for i in 1:N] return nop, wp end const N = 298 #节点的个数 const a = -1.5 #积分下限 const b = 1.5 #积分上限 const k_vec = 0.5:1:5.5 # 波数k的取值

时间: 2024-03-08 15:45:55 浏览: 21
完整的 Python 代码如下: ```python import numpy as np def square_poten_well(x, N): L = 2 V0 = -1 mat_V = np.zeros((N, N)) for i, xx in enumerate(x): if abs(xx) <= L/2: mat_V[i, i] = V0 return mat_V def phi(k, x, N): return [np.exp(1.0j*k*x[i]) for i in range(N)] def Green_func(k, x, xp, N): G = np.ones((N, N), dtype=complex) for i in range(N): G[i, :] = [-1.0j / k * np.exp(1.0j*k*np.abs(x[i]-xp[j])) for j in range(N)] return G def change_of_var(node, weight, a, b, N): nop = [(b-a) * node[i] / 2.0 + (a+b) / 2.0 for i in range(N)] wp = [(b-a) / 2.0 * weight[i] for i in range(N)] return nop, wp N = 298 a = -1.5 b = 1.5 k_vec = np.arange(0.5, 6.0) x, w = np.polynomial.legendre.leggauss(N) x = (b-a)/2.0*x + (b+a)/2.0 w = (b-a)/2.0*w ``` 这段代码实现了一个计算量子力学问题的数值计算方法。其中 `square_poten_well()` 函数用于计算方势阱的势能矩阵,`phi()` 函数用于计算平面波的波函数,`Green_func()` 函数用于计算格林函数,`change_of_var()` 函数用于变量变换,将区间 $[a,b]$ 上的积分变换到 $[-1,1]$ 上。最后,通过调用 `np.polynomial.legendre.leggauss()` 函数来计算 Legendre-Gauss 积分节点和权重,计算节点 `x` 和权重 `w` 后可以进行数值积分。

相关推荐

最新推荐

recommend-type

基于SpringBoot框架的中小企业完全开源的ERP.zip

基于springboot的java毕业&课程设计
recommend-type

基于Springboot的健身信息系统.zip

基于springboot的java毕业&课程设计
recommend-type

基于vue + springboot的学生成绩管理系统.zip

基于springboot的java毕业&课程设计
recommend-type

基于卷积神经网络的语义分割

基于卷积神经网络的语义分割卷积神经网络(Convolutional Neural Networks, CNNs 或 ConvNets)是一类深度神经网络,特别擅长处理图像相关的机器学习和深度学习任务。它们的名称来源于网络中使用了一种叫做卷积的数学运算。以下是卷积神经网络的一些关键组件和特性: 卷积层(Convolutional Layer): 卷积层是CNN的核心组件。它们通过一组可学习的滤波器(或称为卷积核、卷积器)在输入图像(或上一层的输出特征图)上滑动来工作。 滤波器和图像之间的卷积操作生成输出特征图,该特征图反映了滤波器所捕捉的局部图像特性(如边缘、角点等)。 通过使用多个滤波器,卷积层可以提取输入图像中的多种特征。 激活函数(Activation Function): 在卷积操作之后,通常会应用一个激活函数(如ReLU、Sigmoid或tanh)来增加网络的非线性。 池化层(Pooling Layer): 池化层通常位于卷积层之后,用于降低特征图的维度(空间尺寸),减少计算量和参数数量,同时保持特征的空间层次结构。 常见的池化操作包括最大池化(Max Pooling)和平均
recommend-type

track-map_android-master.zip

track-map_android-master
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SQL怎么实现 数据透视表

SQL可以通过使用聚合函数和GROUP BY子句来实现数据透视表。 例如,假设有一个销售记录表,其中包含产品名称、销售日期、销售数量和销售额等信息。要创建一个按照产品名称、销售日期和销售额进行汇总的数据透视表,可以使用以下SQL语句: ``` SELECT ProductName, SaleDate, SUM(SaleQuantity) AS TotalQuantity, SUM(SaleAmount) AS TotalAmount FROM Sales GROUP BY ProductName, SaleDate; ``` 该语句将Sales表按照ProductName和SaleDat
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。