python解武士数独
时间: 2023-11-05 20:00:59 浏览: 173
武士数独问题是一个特殊的9x9数独问题。可以将其视为按照左上、右上、中间、左下、右下的顺序,在有解的前提下,能够求解出一个有效解。在Python中,可以使用回溯算法来解决这个问题。回溯算法通过尝试每个可能的数字,并逐步填充数独格子,直到找到一个有效解为止。
以下是一个可能的Python解决方案:
```python
def solve_samurai_sudoku(board):
if is_complete(board):
return board
row, col = find_empty_cell(board)
for num in range(1, 10):
if is_valid(board, row, col, num):
board[row][col] = num
if solve_samurai_sudoku(board):
return board
board[row][col] = 0
return None
def is_complete(board):
for row in range(9):
for col in range(9):
if board[row][col] == 0:
return False
return True
def find_empty_cell(board):
for row in range(9):
for col in range(9):
if board[row][col] == 0:
return row, col
return None
def is_valid(board, row, col, num):
for i in range(9):
if board[row][i] == num or board[i][col] == num:
return False
start_row = 3 * (row // 3)
start_col = 3 * (col // 3)
for i in range(start_row, start_row + 3):
for j in range(start_col, start_col + 3):
if board[i][j] == num:
return False
return True
# 以下是一个示例数独问题的输入和调用示例
sudoku_board = [
[0, 0, 0, 2, 5, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 7, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 5, 4],
[0, 0, 0, 8, 0, 0, 0, 3, 0],
[0, 0, 0, 0, 0, 0, 5, 0, 0],
[0, 0, 2, 0, 0, 6, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0]
]
solution = solve_samurai_sudoku(sudoku_board)
if solution:
for row in solution:
print(row)
else:
print("No solution found.")
```
阅读全文