基于TensorFlow的CNN实现Mnist手写数字识别详细,带有可视化界面,中文注释

时间: 2024-05-04 10:20:43 浏览: 14
以下是基于TensorFlow实现的CNN代码,实现Mnist手写数字识别: ```python import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # 导入数据 mnist = input_data.read_data_sets('MNIST_data', one_hot=True) # 定义输入输出的占位符 x = tf.placeholder(tf.float32, [None, 784]) y = tf.placeholder(tf.float32, [None, 10]) # 将输入的一维向量转换成二维图像 x_image = tf.reshape(x, [-1, 28, 28, 1]) # 定义第一层卷积层 W_conv1 = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1)) b_conv1 = tf.Variable(tf.constant(0.1, shape=[32])) h_conv1 = tf.nn.relu(tf.nn.conv2d(x_image, W_conv1, strides=[1, 1, 1, 1], padding='SAME') + b_conv1) h_pool1 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') # 定义第二层卷积层 W_conv2 = tf.Variable(tf.truncated_normal([5, 5, 32, 64], stddev=0.1)) b_conv2 = tf.Variable(tf.constant(0.1, shape=[64])) h_conv2 = tf.nn.relu(tf.nn.conv2d(h_pool1, W_conv2, strides=[1, 1, 1, 1], padding='SAME') + b_conv2) h_pool2 = tf.nn.max_pool(h_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') # 定义第一层全连接层 W_fc1 = tf.Variable(tf.truncated_normal([7 * 7 * 64, 1024], stddev=0.1)) b_fc1 = tf.Variable(tf.constant(0.1, shape=[1024])) h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) # 定义dropout层 keep_prob = tf.placeholder(tf.float32) h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) # 定义第二层全连接层 W_fc2 = tf.Variable(tf.truncated_normal([1024, 10], stddev=0.1)) b_fc2 = tf.Variable(tf.constant(0.1, shape=[10])) y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) # 定义损失函数 cross_entropy = tf.reduce_mean(-tf.reduce_sum(y * tf.log(y_conv), reduction_indices=[1])) # 定义优化器 train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) # 定义评估模型的准确率 correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # 初始化变量 init = tf.global_variables_initializer() # 创建会话 sess = tf.Session() sess.run(init) # 训练模型 for i in range(20000): batch = mnist.train.next_batch(50) if i % 100 == 0: train_accuracy = accuracy.eval(session=sess, feed_dict={x: batch[0], y: batch[1], keep_prob: 1.0}) print('step %d, training accuracy %g' % (i, train_accuracy)) train_step.run(session=sess, feed_dict={x: batch[0], y: batch[1], keep_prob: 0.5}) # 评估模型 print('test accuracy %g' % accuracy.eval(session=sess, feed_dict={x: mnist.test.images, y: mnist.test.labels, keep_prob: 1.0})) ``` 代码中首先导入了`input_data`模块用于读取Mnist数据集,然后定义了输入输出的占位符。接着将输入的一维向量转换成二维图像,并定义了两层卷积层和两层全连接层,其中第一层卷积层和第二层卷积层之间加入了池化层。在第一层全连接层后加入dropout层,以避免过拟合。最后定义损失函数、优化器和评估模型的准确率,并初始化变量和创建会话。在训练模型时,每次从数据集中取出50张图片进行训练,并在每训练100次后输出当前的训练准确率。最后评估模型的准确率。

相关推荐

最新推荐

recommend-type

基于TensorFlow的CNN实现Mnist手写数字识别

本文实例为大家分享了基于TensorFlow的CNN实现Mnist手写数字识别的具体代码,供大家参考,具体内容如下 一、CNN模型结构 输入层:Mnist数据集(28*28) 第一层卷积:感受视野5*5,步长为1,卷积核:32个 第一层...
recommend-type

pytorch 利用lstm做mnist手写数字识别分类的实例

今天小编就为大家分享一篇pytorch 利用lstm做mnist手写数字识别分类的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

Python利用逻辑回归模型解决MNIST手写数字识别问题详解

主要介绍了Python利用逻辑回归模型解决MNIST手写数字识别问题,结合实例形式详细分析了Python MNIST手写识别问题原理及逻辑回归模型解决MNIST手写识别问题相关操作技巧,需要的朋友可以参考下
recommend-type

Pytorch实现的手写数字mnist识别功能完整示例

主要介绍了Pytorch实现的手写数字mnist识别功能,结合完整实例形式分析了Pytorch模块手写字识别具体步骤与相关实现技巧,需要的朋友可以参考下
recommend-type

手写数字识别:实验报告

AIstudio手写数字识别项目的实验报告,报告中有代码链接。文档包括: 1.数据预处理 2.数据加载 3.网络结构尝试:简单的多层感知器、卷积神经网络LeNet-5、循环神经网络RNN、Vgg16 4.损失函数:平方损失函数、交叉...
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

用Spring boot和vue写一个登录注册界面

好的,这是一个比较常见的技术问题,我可以为您提供一些参考资料和思路。首先,您可以使用Spring Boot作为后端框架来处理用户认证和注册的逻辑,比如使用Spring Security实现用户登录认证。同时,您还需要设计相应的数据模型和数据库表结构来存储用户信息。在前端方面,您可以使用Vue.js作为框架来构建登录注册页面,使用Axios来发起API请求并和后端进行交互。当然,在实现过程中,还需要考虑一些具体细节,比如数据校验、安全性和用户体验等方面。希望这些信息能够帮助到您。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。