ModuleNotFoundError: No module named 'ardrone_joy'

时间: 2023-11-01 11:58:23 浏览: 179
ModuleNotFoundError: No module named 'ardrone_joy' 是指在运行代码时找不到名为'ardrone_joy'的模块。可能的原因是您没有正确安装或导入该模块。要解决此问题,您可以按照以下步骤操作: 1. 确保您已正确安装了'ardrone_joy'模块。您可以使用pip命令来安装该模块,例如:pip install ardrone_joy。如果您已经安装了该模块,请确保版本与您正在使用的代码兼容。 2. 检查您的代码中是否正确导入了'ardrone_joy'模块。请确认import语句是否正确拼写,并且该模块是否在您的Python环境中可用。 3. 如果您已经按照上述步骤检查并仍然出现问题,请尝试重新安装'ardrone_joy'模块。您可以卸载模块并重新安装,以确保安装过程正确无误。 4. 如果问题仍然存在,请检查您的Python环境和依赖项是否正确配置。确保您的Python版本与所需模块的兼容,并确保所有依赖项都已正确安装。
相关问题

async def Safe_5Gaction(client, userdata, msg): global message_received message_received = False async with Client(server) as client: async with client.filtered_messages(PosAttSub) as messages: await client.subscribe(PosAttSub) while True: try: message = await asyncio.wait_for(msg.__anext__(), timeout=5) message_received = True Msg = json.loads(msg.payload) # 将接收的订阅消息转换为字典格式 print(Msg) except asyncio.TimeoutError: if not message_received: DroneName = DroneSeries_to_num(Msg['Drone']) Safe_Pub_Msg = jsonstr_transform.GS_CMD_Pub(DroneName, 'Land') print(Safe_Pub_Msg) mqtt.push(CMDPub, Safe_Pub_Msg) csv_record.q_allmsg_csv_send(Safe_Pub_Msg, q_allmsg) time.sleep(5) else: message_received = False 代码报错RuntimeWarning: coroutine 'Safe_5Gaction' was never awaited callback(self, self._userdata, message) RuntimeWarning: Enable tracemalloc to get the object allocation traceback。如何解决

这个错误提示告诉我们 "coroutine 'Safe_5Gaction' was never awaited",意味着在代码中没有等待 `Safe_5Gaction` 这个协程的执行。要解决这个问题,你需要在调用 `Safe_5Gaction` 的地方使用 `await` 来等待它的执行。 假设你在某个地方调用了 `Safe_5Gaction`,你可以这样修改代码: ```python await Safe_5Gaction(client, userdata, msg) ``` 这样就能解决这个错误了。需要注意的是,你在调用 `Safe_5Gaction` 的地方也需要是一个协程(被 `async` 修饰的函数),或者在协程上下文中调用它。 另外,你还需要注意代码中的其他问题,比如 `PosAttSub` 和 `server` 的定义,以及相关的导入语句等。

#include <iostream> #include <cmath> #include <ros/ros.h> #include <geometry_msgs/PoseStamped.h> #include <nav_msgs/Odometry.h> #include "plan_env/lec4.h" #include "ego_planner/TutorialGoal.h" using namespace std; ros::Subscriber odom_sub; ros::Publisher param_goal_pub; ros::ServiceClient client; int waypoint_num_; double waypoints_[50][3]; double spin_rate; // void OdomCallback(const nav_msgs::Odometry& msg) { ROS_WARN_ONCE("odom CB"); static int way_point_count = 0; if (way_point_count >= waypoint_num_) { ROS_WARN_ONCE("all points pub"); return; } float dist = std::sqrt(std::pow(waypoints_[way_point_count][0] - msg.pose.pose.position.x, 2) + std::pow(waypoints_[way_point_count][1] - msg.pose.pose.position.y, 2) + std::pow(waypoints_[way_point_count][2] - msg.pose.pose.position.z, 2)); //TODO /***your code for publishing drone goal***/ } int main(int argc, char** argv) { ros::init(argc, argv, "exercesie2_param_node"); ros::NodeHandle n("~"); odom_sub = n.subscribe("/odom", 10, OdomCallback); param_goal_pub = n.advertise<ego_planner::TutorialGoal>("/waypoint_generator/tutorial_goal", 10); //TODO /*your code for param reading*/ for(i) n.param("point_x", waypoints_ []); n.param("point_y", waypoints_10.0); n.param("point_z", waypoints_ 10.0); n.param("/spin_rate", spin_rate, 10.0); ros::Duration(0.5).sleep(); ros::Rate loop_rate(spin_rate); while (ros::ok()) { ros::spinOnce(); loop_rate.sleep(); } }补充完整这段代码

以下是补充完整的代码: ```cpp #include <iostream> #include <cmath> #include <ros/ros.h> #include <geometry_msgs/PoseStamped.h> #include <nav_msgs/Odometry.h> #include "plan_env/lec4.h" #include "ego_planner/TutorialGoal.h" using namespace std; ros::Subscriber odom_sub; ros::Publisher param_goal_pub; ros::ServiceClient client; int waypoint_num_; double waypoints_[50][3]; double spin_rate; // void OdomCallback(const nav_msgs::Odometry& msg) { ROS_WARN_ONCE("odom CB"); static int way_point_count = 0; if (way_point_count >= waypoint_num_) { ROS_WARN_ONCE("all points pub"); return; } float dist = std::sqrt(std::pow(waypoints_[way_point_count][0] - msg.pose.pose.position.x, 2) + std::pow(waypoints_[way_point_count][1] - msg.pose.pose.position.y, 2) + std::pow(waypoints_[way_point_count][2] - msg.pose.pose.position.z, 2)); //TODO /***your code for publishing drone goal***/ if (dist < 0.1) { ego_planner::TutorialGoal goal; goal.point.x = waypoints_[way_point_count][0]; goal.point.y = waypoints_[way_point_count][1]; goal.point.z = waypoints_[way_point_count][2]; param_goal_pub.publish(goal); way_point_count++; } } int main(int argc, char** argv) { ros::init(argc, argv, "exercesie2_param_node"); ros::NodeHandle n("~"); odom_sub = n.subscribe("/odom", 10, OdomCallback); param_goal_pub = n.advertise<ego_planner::TutorialGoal>("/waypoint_generator/tutorial_goal", 10); //TODO /*your code for param reading*/ n.param("/waypoint_num", waypoint_num_, 0); for (int i = 0; i < waypoint_num_; i++) { string param_x = "/waypoint_" + to_string(i) + "/x"; string param_y = "/waypoint_" + to_string(i) + "/y"; string param_z = "/waypoint_" + to_string(i) + "/z"; n.param(param_x, waypoints_[i][0], 0.0); n.param(param_y, waypoints_[i][1], 0.0); n.param(param_z, waypoints_[i][2], 0.0); } n.param("/spin_rate", spin_rate, 10.0); ros::Duration(0.5).sleep(); ros::Rate loop_rate(spin_rate); while (ros::ok()) { ros::spinOnce(); loop_rate.sleep(); } } ``` 这段代码是一个ROS节点,用于读取参数并发布无人机的目标位置。它通过订阅`/odom`话题获取当前无人机的位置信息,然后根据预设的目标点,计算当前位置与目标点之间的距离。当距离小于阈值时,发布下一个目标点作为无人机的目标位置。 在`main`函数中,我们首先初始化ROS节点,并设置参数服务器前缀为`~`。然后创建一个订阅器`odom_sub`,用于接收无人机的位置信息。创建一个发布器`param_goal_pub`,用于发布无人机的目标位置。接着从参数服务器中读取参数,包括目标点的数量`waypoint_num`和每个目标点的坐标。最后,设置循环的频率,并在循环中调用`ros::spinOnce()`来处理ROS的回调函数。 其中,`OdomCallback`是回调函数,用于处理接收到的无人机位置信息。在该函数中,我们首先判断是否已经发布了所有的目标点,如果是,则直接返回。否则,计算当前位置与目标点之间的距离`dist`。如果距离小于设定的阈值(这里设为0.1),则发布下一个目标点作为无人机的目标位置,并将目标点计数加1。 请根据实际需求修改其中的TODO部分,完成发布无人机目标位置的代码。
阅读全文

相关推荐

最新推荐

recommend-type

基于C语言课程设计学生成绩管理系统、详细文档+全部资料+高分项目.zip

【资源说明】 基于C语言课程设计学生成绩管理系统、详细文档+全部资料+高分项目.zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

基于springboot的简历系统源码(java毕业设计完整源码+LW).zip

项目均经过测试,可正常运行! 环境说明: 开发语言:java JDK版本:jdk1.8 框架:springboot 数据库:mysql 5.7/8 数据库工具:navicat 开发软件:eclipse/idea
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

传感器集成全攻略:ICM-42688-P运动设备应用详解

![传感器集成全攻略:ICM-42688-P运动设备应用详解](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-ba33fcfbde1d1207d7b8fe45b6ea58d0.png) # 摘要 ICM-42688-P传感器作为一种先进的惯性测量单元,广泛应用于多种运动设备中。本文首先介绍了ICM-42688-P传感器的基本概述和技术规格,然后深入探讨了其编程基础,包括软件接口、数据读取处理及校准测试。接着,本文详细分析了该传感器在嵌入式系统、运动控制和人机交互设备中的实践应用,并且探讨了高级功能开发,
recommend-type

matlab 中实现 astar

在MATLAB中,A*算法是一种用于求解最短路径问题的启发式搜索算法。它适用于带权重的图或网格,特别是当有大量潜在解决方案时,比如迷宫寻路问题。以下是使用MATLAB基本步骤来实现A*算法: 1. **数据结构准备**: - 创建一个二维数组表示地图,其中0代表可以通行的节点,其他值代表障碍物或边界。 - 定义一个队列(通常使用`prioritiesqueue`)来存储待探索的节点及其信息。 2. **初始化**: - 设定起始节点(start),目标节点(goal),以及每个节点的初始g值(从起点到该点的实际代价)和f值(g值加上估计的h值,即启发函数)。 3.