width = max(distance(top_left, top_right), distance(bottom_left, bottom_right)) NameError: name 'distance' is not defined
时间: 2024-11-05 15:34:40 浏览: 25
这个Python表达式的意思是在计算矩形区域的宽度时,取对角线两点之间的最大距离。这里的`width`表示矩形的宽度,`top_left`和`top_right`是矩形左上角和右上角的坐标点,`bottom_left`和`bottom_right`则是左下角和右下角的坐标点。`distance`函数用于计算两个坐标点之间的距离,但是在这个上下文中,`distance`函数并未在当前作用域内定义,所以会出现`NameError`。
如果你想要解决这个问题,你需要首先定义一个`distance`函数,例如可以使用Python的标准库函数`math.dist()`或者自定义一个计算两点间距离的函数:
```python
import math
def distance(point1, point2):
return math.sqrt((point1[0] - point2[0])**2 + (point1[1] - point2[1])**2)
width = max(distance(top_left, top_right), distance(bottom_left, bottom_right))
```
相关问题
import cv2 import numpy as np def find_nearest_points(image): # 获取图像的高度和宽度 height, width = image.shape[:2] # 计算四个端点的坐标 top_left = (0, 0) top_right = (width-1, 0) bottom_left = (0, height-1) bottom_right = (width-1, height-1) # 初始化最近的四个点的列表 nearest_points = [] # 计算每个端点最近的点 for point in [top_left, top_right, bottom_left, bottom_right]: min_distance = float('inf') # 初始化最小距离为无穷大 nearest_point = None # 遍历图像中的每个像素,找到最近的点 for y in range(height): for x in range(width): distance = cv2.pointPolygonTest([point], (x, y), True) # 更新最小距离和对应的最近点 if distance < min_distance: min_distance = distance nearest_point = (x, y) nearest_points.append(nearest_point) return nearest_points如何将它的点打印出来
要将找到的最近点打印出来,你可以在函数的末尾添加以下代码:
```python
for point in nearest_points:
print(f"Nearest point: {point}")
```
这将遍历最近点列表并打印每个点的坐标。完整的函数代码如下:
```python
import cv2
import numpy as np
def find_nearest_points(image):
# 获取图像的高度和宽度
height, width = image.shape[:2]
# 计算四个端点的坐标
top_left = (0, 0)
top_right = (width-1, 0)
bottom_left = (0, height-1)
bottom_right = (width-1, height-1)
# 初始化最近的四个点的列表
nearest_points = []
# 计算每个端点最近的点
for point in [top_left, top_right, bottom_left, bottom_right]:
min_distance = float('inf') # 初始化最小距离为无穷大
nearest_point = None
# 遍历图像中的每个像素,找到最近的点
for y in range(height):
for x in range(width):
distance = cv2.pointPolygonTest([point], (x, y), True)
# 更新最小距离和对应的最近点
if distance < min_distance:
min_distance = distance
nearest_point = (x, y)
nearest_points.append(nearest_point)
for point in nearest_points:
print(f"Nearest point: {point}")
return nearest_points
```
当调用`find_nearest_points()`函数时,它将打印出最近点的坐标。你可以根据需要自定义打印的格式。
def detect_grasps(q_img, ang_img, width_img=None, no_grasps=1): """ Detect grasps in a GG-CNN output. :param q_img: Q image network output :param ang_img: Angle image network output :param width_img: (optional) Width image network output :param no_grasps: Max number of grasps to return :return: list of Grasps """ local_max = peak_local_max(q_img, min_distance=20, threshold_abs=0.2, num_peaks=no_grasps) grasps = [] for grasp_point_array in local_max: grasp_point = tuple(grasp_point_array) grasp_angle = ang_img[grasp_point] g = Grasp(grasp_point, grasp_angle) if width_img is not None: g.length = width_img[grasp_point] g.width = g.length/2 grasps.append(g) return grasps
这段代码是用来在机器人视觉中检测物体的抓取点的。它接收神经网络输出的 Q 图像和 Angle 图像,以及可选的 Width 图像,然后使用 peak_local_max 函数检测图像中的局部最大值,作为抓取点。然后,对于每个抓取点,该代码创建一个 `Grasp` 对象,将其添加到 `grasps` 列表中,并返回该列表。如果提供了 Width 图像,则还会为每个 `Grasp` 对象设置 length 和 width 的属性。
阅读全文