enumerate(train_loader, 0)
时间: 2023-04-15 14:00:48 浏览: 743
这是一个Python函数,用于将一个可迭代对象(例如一个数据集)转换为一个枚举对象。train_loader是一个数据加载器,0是一个可选参数,用于指定枚举对象的起始索引。该函数返回一个枚举对象,其中每个元素都是一个元组,包含一个索引和一个数据项。
相关问题
for step, (images, labels) in tqdm(enumerate(train_loader), total=len(train_loader)):
这段代码使用了Python中的`enumerate()`函数,它可以将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,同时列出数据和数据下标。在这里,`enumerate(train_loader)`返回一个迭代器对象,每次迭代会返回一个元组`(step, (images, labels))`,其中`step`表示当前迭代的次数,`(images, labels)`表示从`train_loader`中取出的一个batch的样本和标签。然后使用`tqdm()`函数将这个迭代器包装起来,实现进度条的显示,其中`total=len(train_loader)`表示总共需要迭代`len(train_loader)`次。最终,这段代码会遍历整个`train_loader`,每次取出一个batch的数据进行训练。
def train(model, train_loader, criterion, optimizer): model.train() train_loss = 0.0 train_acc = 0.0 for i, (inputs, labels) in enumerate(train_loader): optimizer.zero_grad() outputs = model(inputs.unsqueeze(1).float()) loss = criterion(outputs, labels.long()) loss.backward() optimizer.step() train_loss += loss.item() * inputs.size(0) _, preds = torch.max(outputs, 1) train_acc += torch.sum(preds == labels.data) train_loss = train_loss / len(train_loader.dataset) train_acc = train_acc.double() / len(train_loader.dataset) return train_loss, train_acc 用1000字描述这段代码
这段代码是用来训练深度神经网络的,其中 model 是要被训练的模型,train_loader 是一个 PyTorch 数据加载器,criterion 是一个损失函数,optimizer 是一个优化器。在训练过程中,首先将模型设为训练模式。然后在数据加载器中遍历每个 batch,将优化器的梯度清零,并将输入数据通过模型得到输出。之后计算模型输出与真实标签的损失,并进行反向传播更新模型参数。在每个 batch 中,记录训练损失和训练精度,用于后续的评估和可视化。最后,计算整个数据集上的平均训练损失和训练精度,并返回这两个值。
阅读全文