for _step, input_data in enumerate(train_loader): 而train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True, num_workers=0),会循环多少次
时间: 2024-01-26 16:04:54 浏览: 86
python torch.utils.data.DataLoader使用方法
5星 · 资源好评率100%
根据代码中提供的信息,train_loader 是一个 DataLoader 对象,其参数 batch_size 为 64,shuffle 为 True,num_workers 为 0,即使用当前进程加载数据。因此,train_loader 每次会将 train_dataset 中的 64 个样本打包成一个 batch,并且随机打乱样本顺序。如果 train_dataset 中的样本数量不足 64 个,那么 train_loader 最后几个 batch 的大小会小于 64。由于在循环中使用了 enumerate 函数,因此 _step 会记录当前循环的次数,即 train_loader 会循环 train_dataset 中的所有样本,直到遍历完整个数据集为止。因此,train_loader 会循环的次数为 train_dataset 中样本数量除以 batch_size 的上取整值,即 ceil(len(train_dataset) / batch_size)。
阅读全文