用python写一个利用凹点匹配检测算法计数的代码
时间: 2024-09-11 17:04:06 浏览: 55
基于主凹点检测的血细胞图像去粘连分割算法研究
5星 · 资源好评率100%
在Python中,你可以使用`skimage.feature.corner_peaks`函数来实现凹点匹配(也称为局部极值点),这是一种常用的特征检测技术,尤其在图像处理和计算机视觉中。以下是一个简单的示例,展示如何使用OpenCV和Scikit-image库来计算图像中的角点:
```python
from skimage.feature import peak_local_max
import cv2
def count_inverted_points(image_path):
# 读取图片
image = cv2.imread(image_path, 0) # 将彩色图转为灰度
if image is None:
print("Failed to load image")
return
# 使用Sobel算子检测边缘
sobelx = cv2.Sobel(image, cv2.CV_64F, 1, 0, ksize=5)
sobely = cv2.Sobel(image, cv2.CV_64F, 0, 1, ksize=5)
# 计算梯度幅值和方向
gradient_magnitude, gradient_direction = cv2.cartToPolar(sobelx, sobely)
# 检测凸点(非凹点)
min_distance = 5 # 设置峰间距阈值
peaks = peak_local_max(gradient_magnitude, min_distance=min_distance, labels=None)
# 凹点是负的局部峰值,所以减去它们
inverted_peaks = peaks[gradient_magnitude[peaks[:, 0], peaks[:, 1]] < 0]
return len(inverted_peaks), inverted_peaks
# 调用函数并打印结果
inverted_point_count, points = count_inverted_points('your_image_path.jpg')
print(f"Detected {inverted_point_count} inverted points at the following coordinates:")
for point in points:
print(point)
阅读全文