keil写stm32f103rct6用定时器3输出脉冲的标准库的代码

时间: 2023-07-14 22:12:01 浏览: 32
以下是使用定时器3输出脉冲的标准库代码: ``` #include "stm32f10x.h" #define PULSE_PERIOD 9999 // 脉冲周期为10000个计数器时钟周期,计数器从0开始计数 void TIM3_GPIO_Config(void); void TIM3_Mode_Config(void); int main(void) { TIM3_GPIO_Config(); // 配置TIM3的GPIO引脚 TIM3_Mode_Config(); // 配置TIM3为PWM输出模式 while(1); } /** * @brief 配置TIM3的GPIO引脚 * @param 无 * @retval 无 */ void TIM3_GPIO_Config(void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE); // 使能GPIOB时钟 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; // TIM3_CH3对应GPIOB的PB0引脚 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; // 推挽输出 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; // GPIO速度为50MHz GPIO_Init(GPIOB, &GPIO_InitStructure); // 初始化GPIOB的PB0引脚 } /** * @brief 配置TIM3为PWM输出模式 * @param 无 * @retval 无 */ void TIM3_Mode_Config(void) { TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_OCInitTypeDef TIM_OCInitStructure; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE); // 使能TIM3时钟 TIM_TimeBaseStructure.TIM_Period = PULSE_PERIOD; // 设置计数器周期为PULSE_PERIOD TIM_TimeBaseStructure.TIM_Prescaler = SystemCoreClock/1000000-1; // 设置预分频值为1MHz TIM_TimeBaseStructure.TIM_ClockDivision = 0; // 时钟分割 TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; // 向上计数模式 TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure); // 初始化TIM3的计数器和分频器 TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; // PWM输出模式1 TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; // 输出使能 TIM_OCInitStructure.TIM_Pulse = PULSE_PERIOD/2; // 初始占空比为50% TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; // 高电平有效 TIM_OC3Init(TIM3, &TIM_OCInitStructure); // 配置TIM3通道3 TIM_Cmd(TIM3, ENABLE); // 使能TIM3 TIM_CtrlPWMOutputs(TIM3, ENABLE); // 使能TIM3的PWM输出 } ``` 在这个例子中,我们使用了定时器3的通道3输出脉冲。GPIOB的PB0引脚连接到了TIM3_CH3通道的输出端口。在TIM3_Mode_Config函数中,我们使用了PWM输出模式1来控制脉冲的占空比。TIM_TimeBaseInitTypeDef结构体用于配置计数器和分频器,TIM_OCInitTypeDef结构体用于配置PWM输出通道的参数。最后,我们使用了TIM_Cmd函数启动定时器3,并使用TIM_CtrlPWMOutputs函数使能PWM输出。在while循环中,我们什么也不做,只是让程序保持运行状态。

相关推荐

最新推荐

嵌入式实验报告 stm32f103 跑马灯实验 GPIO口操作

熟悉编译环境,尝试独立进行工程的创建、编译、下载。通过阅读 STM32 芯片手册了解关于 GPIO 的相关内容,并且通过编程实现 LED 流水灯控制。

STM32工程在keil下怎么移植到IAR环境(stm32f103c8).docx

从STM32的keil开发环境移植到IAR开发环境,分为六步走。 首先安装IAR编译环境,这个自行安装。 第一步 新建文件夹 新建一个文件夹命名“LED_CTRL”,在这个文件夹下再建立三个文件夹, CMSISI:放系统启动相关文件 ,...

步行高级机器人技术.doc

步行高级机器人技术.doc

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

粒子群多目标算法matlab代码【MATLAB代码实现】定义优化问题参数

# 1. 粒子群多目标算法简介 ## 1.1 什么是粒子群算法? 粒子群算法是一种基于群体智能的优化算法,灵感来源于鸟群或鱼群等生物群体的行为。每个“粒子”代表问题空间中的一个候选解,而整个粒子群代表了候选解的一个群体。粒子在解空间中搜索最优解,通过个体的经验和群体的协作来不断调整自身位置和速度,从而逐步靠近最优解。 ## 1.2 粒子群算法在多目标优化中的应用 粒子群算法最初是针对单目标优化问题提出的,但后来被扩展应用到了多目标优化领域。与单目标优化不同,多目标优化需要考虑多个冲突的目标函数,因此粒子群算法的应用在多目标优化中具有一定的挑战性。 ## 1.3 粒子群多目标算法原理解

c语言本题要求编写程序,计算学生们的平均成绩,并统计不及格人数。题目保证输入输出均在整型范围内。

好的,下面是一个简单的 C 语言程序,可以帮助你计算学生们的平均成绩,并统计不及格人数: ```c #include <stdio.h> int main() { int n, sum = 0, fail = 0; scanf("%d", &n); // 输入学生数量 for (int i = 0; i < n; i++) { int score; scanf("%d", &score); // 输入学生的成绩 sum += score; // 累加学生的成绩 if (score < 60) {

资料计算机二级Python真题及答案解析1练习.pdf

。。。

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依

粒子群多目标算法matlab代码【算法实现步骤】计算适应度函数

# 1. 粒子群多目标算法简介 ## 1.1 粒子群多目标算法概述 在多目标优化问题中,粒子群多目标算法是一种常用的元启发式优化算法。它借鉴了鸟群觅食的行为,通过不断调整粒子的位置和速度来搜索最优解空间。相比于传统的单目标优化算法,粒子群多目标算法能够有效解决多目标优化问题。 ## 1.2 算法原理与特点 粒子群多目标算法的核心原理是通过模拟群体中粒子的运动,不断更新粒子的位置和速度,以达到最优解。其特点包括易于实现、收敛速度快、对参数不敏感等。 ## 1.3 相关研究现状分析 目前,粒子群多目标算法在多目标优化领域得到了广泛应用,并在不同领域取得了一定的成果。研究者们也在不断探索

pyinstaller --onefile your_program.py 这段代码添加到程序的什么位置

在使用 PyInstaller 封装 Python 程序时,需要在命令行中执行 PyInstaller 的命令,而不是将命令添加到程序中。 具体来说,需要在命令行中进入 Python 程序所在的目录,然后执行以下命令: ``` pyinstaller --onefile your_program.py ``` 其中,--onefile 表示将程序打包成一个单独的可执行文件,your_program.py 是你要打包的 Python 程序的文件名。 执行完毕后,PyInstaller 会在当前目录下生成一个 dist 文件夹,其中包含了打包好的可执行文件和依赖库等文件。 需要注意的是,