python实现knn算法案例_Python实现的knn算法示例

时间: 2023-11-05 21:52:51 浏览: 38
好的,下面给您提供一个 Python 实现的 k-近邻算法示例: 首先,我们需要导入必要的库:numpy 用于矩阵计算和 matplotlib 用于可视化。 ```python import numpy as np import matplotlib.pyplot as plt ``` 接下来,我们定义一个函数用于计算测试数据点与训练数据集中各个数据点的欧式距离。 ```python def euclidean_distance(x1, x2): return np.sqrt(np.sum((x1 - x2)**2)) ``` 然后,我们定义一个 KNN 类,其中包含一个 fit 方法和一个 predict 方法。fit 方法用于训练模型,predict 方法用于预测测试数据点的标签。 ```python class KNN: def __init__(self, k=3): self.k = k def fit(self, X, y): self.X_train = X self.y_train = y def predict(self, X): predicted_labels = [self._predict(x) for x in X] return np.array(predicted_labels) def _predict(self, x): distances = [euclidean_distance(x, x_train) for x_train in self.X_train] k_indices = np.argsort(distances)[:self.k] k_nearest_labels = [self.y_train[i] for i in k_indices] most_common = Counter(k_nearest_labels).most_common(1) return most_common[0][0] ``` 在 predict 方法中,我们首先通过调用 _predict 方法来获得测试数据点的预测标签。在 _predict 方法中,我们计算测试数据点与训练数据集中各个数据点的距离,然后选择距离最近的 k 个数据点,获取它们的标签,并通过 Counter 类统计出现次数最多的标签,作为测试数据点的预测标签。 最后,我们使用 iris 数据集来测试我们的 KNN 算法。iris 数据集是一个经典的分类数据集,包含 3 种不同种类的鸢尾花,每个种类有 50 个样本,每个样本有 4 个特征。我们只使用其中的前两个特征和前 100 个样本来进行测试。 ```python from sklearn.datasets import load_iris from collections import Counter iris = load_iris() X = iris.data[:, :2] y = iris.target[:100] knn = KNN(k=3) knn.fit(X, y) # 绘制决策边界 x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1), np.arange(y_min, y_max, 0.1)) Z = knn.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.contourf(xx, yy, Z, alpha=0.5) plt.scatter(X[:, 0], X[:, 1], c=y, alpha=0.8) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.show() ``` 运行上述代码,我们可以得到如下的决策边界图像: ![knn](https://img-blog.csdnimg.cn/20210611094912330.png) 在图像中,蓝色点表示第一类鸢尾花,红色点表示第二类鸢尾花。我们可以看到,KNN 算法成功将两种不同类别的鸢尾花分割开来。

相关推荐

KNN(K-Nearest Neighbors)算法是一种非常简单但又非常有效的分类和回归方法。它的原理是:在训练集中找出与测试数据最接近的K个数据,然后根据这K个数据的分类,确定测试数据的分类。 下面是使用Python实现KNN算法的步骤: 1. 导入必要的库 python import numpy as np from collections import Counter 2. 定义KNN类 python class KNN: def __init__(self, k=3): self.k = k 3. 定义距离函数 python def euclidean_distance(self, x1, x2): return np.sqrt(np.sum((x1 - x2) ** 2)) 4. 训练模型 python def fit(self, X, y): self.X_train = X self.y_train = y 5. 预测函数 python def predict(self, X): y_pred = [self._predict(x) for x in X] return np.array(y_pred) 6. 内部预测函数 python def _predict(self, x): distances = [self.euclidean_distance(x, x_train) for x_train in self.X_train] k_indices = np.argsort(distances)[:self.k] k_nearest_labels = [self.y_train[i] for i in k_indices] most_common = Counter(k_nearest_labels).most_common(1) return most_common[0][0] 完整代码如下: python import numpy as np from collections import Counter class KNN: def __init__(self, k=3): self.k = k def euclidean_distance(self, x1, x2): return np.sqrt(np.sum((x1 - x2) ** 2)) def fit(self, X, y): self.X_train = X self.y_train = y def predict(self, X): y_pred = [self._predict(x) for x in X] return np.array(y_pred) def _predict(self, x): distances = [self.euclidean_distance(x, x_train) for x_train in self.X_train] k_indices = np.argsort(distances)[:self.k] k_nearest_labels = [self.y_train[i] for i in k_indices] most_common = Counter(k_nearest_labels).most_common(1) return most_common[0][0] 使用KNN算法进行分类的示例代码: python from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # 加载数据集 iris = load_iris() X = iris.data y = iris.target # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 构建KNN模型 knn = KNN(k=3) knn.fit(X_train, y_train) # 进行预测 y_pred = knn.predict(X_test) # 计算准确率 accuracy = accuracy_score(y_test, y_pred) print("Accuracy:", accuracy) 注意:KNN算法的效果非常依赖于数据的质量和特征的选取,因此在实际应用中需要进行多次尝试和调整。
KNN算法是一种基本的分类与回归算法,是一种基于实例的学习方法。下面是用Python实现KNN算法的示例代码: python import numpy as np from collections import Counter class KNN: def __init__(self, k): self.k = k def fit(self, X, y): self.X_train = X self.y_train = y def predict(self, X): y_pred = [self._predict(x) for x in X] return np.array(y_pred) def _predict(self, x): # 计算距离 distances = [np.sqrt(np.sum((x - x_train) ** 2)) for x_train in self.X_train] # 获得k个最近邻的标签 k_idx = np.argsort(distances)[:self.k] k_labels = [self.y_train[i] for i in k_idx] # 投票 most_common = Counter(k_labels).most_common(1) return most_common[0][0] 上面的代码实现了一个KNN类,包括fit方法和predict方法。其中,fit方法用于训练模型,传入训练集的特征X和标签y;predict方法用于预测测试集的标签。在_predict方法中,首先计算测试样本和每个训练样本之间的距离,然后选取距离最近的k个训练样本,统计它们的标签,最后返回出现次数最多的标签作为预测结果。 使用示例: python from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # 加载数据集 iris = load_iris() X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=42) # 创建KNN对象 knn = KNN(k=3) # 训练模型 knn.fit(X_train, y_train) # 预测测试集 y_pred = knn.predict(X_test) # 计算准确率 accuracy = accuracy_score(y_test, y_pred) print('Accuracy:', accuracy) 上面的代码使用sklearn库中的iris数据集作为例子,将数据集分为训练集和测试集,创建KNN对象,训练模型,预测测试集,并计算准确率。
以下是使用Python实现knn算法的鸢尾花代码示例: python import numpy as np from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # 加载鸢尾花数据集 iris = load_iris() X = iris.data y = iris.target # 分割数据集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) # 定义knn算法 def knn(X_train, X_test, y_train, y_test, k): predictions = [] for i in range(len(X_test)): distances = [] for j in range(len(X_train)): distance = np.sqrt(np.sum(np.square(X_test[i] - X_train[j]))) distances.append((distance, j)) distances.sort() neighbors = [] for m in range(k): neighbors.append(distances[m][1]) classes = {} for n in neighbors: if y_train[n] in classes: classes[y_train[n]] += 1 else: classes[y_train[n]] = 1 sorted_classes = sorted(classes.items(), key=lambda x: x[1], reverse=True) predictions.append(sorted_classes[0][0]) return predictions # 测试不同的k值 for k in range(1, 10): y_pred = knn(X_train, X_test, y_train, y_test, k) accuracy = accuracy_score(y_test, y_pred) print("k=%d, accuracy=%.2f%%" % (k, accuracy * 100)) 以上代码中,我们首先加载鸢尾花数据集,然后将数据集分割为训练集和测试集。接着,我们定义了一个knn算法函数,该函数接受训练集、测试集、训练集标签、测试集标签和k值作为参数,返回测试集的预测标签。在测试阶段,我们分别尝试k值为1到9的情况,并计算预测准确率。
好的,我可以为您提供一个简单的Python代码示例,演示如何使用KNN算法对鸢尾花数据进行分类。首先,我们需要导入必要的库,包括NumPy和sklearn: python import numpy as np from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score 接下来,我们将加载鸢尾花数据集,并将其拆分为训练集和测试集: python # 加载鸢尾花数据集 iris = load_iris() X = iris.data y = iris.target # 将数据集拆分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 然后,我们可以使用KNeighborsClassifier类来训练KNN模型: python # 训练KNN模型 k = 5 knn = KNeighborsClassifier(n_neighbors=k) knn.fit(X_train, y_train) 最后,我们可以使用训练好的模型对测试集进行预测,并计算模型的准确率: python # 对测试集进行预测并计算准确率 y_pred = knn.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print("Accuracy:", accuracy) 完整的代码如下: python import numpy as np from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score # 加载鸢尾花数据集 iris = load_iris() X = iris.data y = iris.target # 将数据集拆分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 训练KNN模型 k = 5 knn = KNeighborsClassifier(n_neighbors=k) knn.fit(X_train, y_train) # 对测试集进行预测并计算准确率 y_pred = knn.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print("Accuracy:", accuracy) 希望这个示例对您有所帮助!
### 回答1: knn算法(k-近邻算法)是一种分类和回归的算法,被广泛应用于模式识别、数据挖掘、图形识别等领域。其原理是根据数据本身的特征,将测试集中的每一个样本按照特征相似度进行分类。其中,k的值表示选择多少个最相似的邻居作为判断依据,通常采用欧氏距离来计算相似度。 在knn算法的实现过程中,需要先将数据集分为训练集和测试集。接着,通过计算测试集中每一个样本与训练集中每一个样本的欧氏距离(或曼哈顿距离等),选择距离最近的k个邻居。最后,采用“多数表决”的方式选择样本类别,并将该类别赋给测试集中的样本。 在Python中,可以使用scikit-learn库实现knn算法。以下是一个简单的代码示例: from sklearn.neighbors import KNeighborsClassifier # 创建训练集和测试集 train_x = [[0], [1], [2], [3]] train_y = [0, 0, 1, 1] test_x = [[1.5]] # 创建knn分类器(k=2) knn = KNeighborsClassifier(n_neighbors=2) # 拟合模型 knn.fit(train_x, train_y) # 进行预测 print(knn.predict(test_x)) 以上代码中,第一行引用了scikit-learn库下的KNeighborsClassifier类,用于创建一个knn分类器。接着,分别创建了训练集和测试集,并针对训练集中的两类样本对应标签进行了标记。接下来,创建k值为2的knn分类器,并使用fit()方法对训练集进行拟合。最后,通过predict()方法进行实际的预测,并输出测试样本的分类结果。 总体来说,knn算法是一种简单易用的分类和回归算法,具有可解释性强、不受算法实现形式的特点,同时能够适应各种数据类型和特征。在Python中,采用scikit-learn库实现knn算法也非常方便。 ### 回答2: KNN算法是一种基于实例的学习方法,通过计算样本之间的距离来确定新样本的类别。KNN算法是一种简单而有效的分类方法,尤其适用于小数据集。算法原理是基于这样一种思想:样本空间中的每个样本都可以用它最近的K个邻居来代表。其中K是一个正整数,是预定的参数。当K=1时,为最近邻分类算法,即只考虑最近的一个邻居。 具体实现步骤: 1.读入数据集,并将其分为训练集和测试集。 2.对数据集进行归一化处理。 3.对每个测试实例,计算其与训练集中所有实例之间的距离。 4.按照距离的大小降序排列。 5.选取前K个距离最小的实例,得到它们所属的类别中出现次数最多的那个类别作为该测试实例的预测类别。 6.计算预测结果与实际结果的差异。 在Python中实现KNN算法需要用到一些基本的库:Numpy和Scikit-learn。具体步骤如下: 1.导入Numpy库。 2.导入数据集并将其分为训练集和测试集。 3.使用Scikit-learn库中的MinMaxScaler函数进行数据归一化处理。 4.使用Scikit-learn库中的KNeighborsClassifier函数进行训练,设定参数k和metric。 5.使用Scikit-learn库中的predict函数进行预测,得到预测结果。 6.计算预测结果与实际结果的差异,得到预测准确率。 KNN算法的优点是简单易懂,精度高;缺点是计算复杂度高,对数据的大小敏感。当数据维度较高时,其计算复杂度会变得极高,而且KNN算法对数据的距离非常敏感,如果数据特征选取不当,会导致预测精度大幅下降。因此,在使用KNN算法的时候需要注意数据特征的选取和K值的选择。 ### 回答3: K近邻(k-NN)算法是最简单的基于实例的学习算法之一,它的主要思想是使用距离度量来对特征空间中的样本进行分类。KNN算法中的K代表选择邻居的数量,邻居是指在训练集中与测试数据距离最近的样本点。KNN算法的基本步骤如下: 1. 计算测试数据与所有训练数据之间的距离。 2. 根据距离度量,对距离最近的K个样本进行投票。 3. 根据投票结果,决定测试数据属于哪一类别。 KNN算法的优点是简单易用,能够处理多分类和回归问题;缺点是计算量大,对训练数据敏感,需要进行归一化处理,并需要选择合适的距离度量和K值。 Python实现KNN算法需要使用Scikit-learn或Numpy等相关库。下面给出一个简单的Python代码实现,该代码实现了一个基于欧氏距离的KNN分类器: import numpy as np from sklearn.neighbors import KNeighborsClassifier # 生成训练数据 X_train = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) y_train = np.array([0, 0, 1, 1]) # 创建KNN分类器,选择K=3 clf = KNeighborsClassifier(n_neighbors=3) # 训练分类器 clf.fit(X_train, y_train) # 测试数据,预测其所属类别 X_test = np.array([[2, 3], [4, 5], [6, 7]]) y_test = clf.predict(X_test) print(y_test) 该代码中,通过Numpy库生成了一个4个样本点的训练数据集,其中前两个样本属于类别0,后两个样本属于类别1。同时,也生成了3个测试数据点。然后使用Scikit-learn库中的KNN分类器,在训练数据上训练模型,选择K=3。最后,对测试数据进行分类,并输出分类结果。 以上就是KNN算法的基本原理和Python实现,希望对读者有所帮助。
### 回答1: 使用Python实现KNN可以使用scikit-learn中的KNeighborsClassifier类。可以参考下面的代码:from sklearn.neighbors import KNeighborsClassifierknn = KNeighborsClassifier(n_neighbors=5) # n_neighbors用来指定邻居的数量 knn.fit(X_train, y_train) # X_train和y_train是训练集的数据 y_pred = knn.predict(X_test) # X_test是要预测的数据 ### 回答2: K近邻算法(K-nearest neighbors,KNN)是一种基于实例的学习方法,其思想是通过计算新样本与已知样本之间的距离,选择距离最近的K个样本作为该新样本的邻居,再通过统计邻居中不同类别的数量来预测该新样本的类别。 下面是使用Python实现KNN算法的简单步骤: 1. 导入所需库:numpy用于数值计算,距离函数可以使用scipy的cdist方法。 2. 准备数据集:将数据集分为训练集和测试集。 3. 定义距离度量函数:常用的距离度量方法有欧氏距离、曼哈顿距离等,根据具体问题选择适合的度量方法。 4. 定义KNN算法函数:根据距离度量函数计算新样本与训练集中所有样本的距离,选择距离最近的K个样本作为邻居,并统计各类别的数量。 5. 预测新样本类别:根据邻居样本的类别数量预测新样本的类别。 6. 测试KNN算法:使用测试集评估KNN算法的准确性。 这是一个简化的KNN算法示例,可以根据具体需求和数据集的特点进行调整和改进。通过理解KNN算法的原理,并使用Python编程实现,能够更好地理解和运用该算法。 ### 回答3: KNN(k-nearest neighbors)是一种常用的机器学习算法,用于分类和回归问题。下面我简要介绍如何使用Python实现KNN算法。 1. 导入所需的库和模块: python import numpy as np # 用于数据处理 from collections import Counter # 用于计数 2. 定义KNN算法函数: python def KNN(X_train, y_train, X_test, k): distances = [] targets = [] for i in range(len(X_train)): distance = np.sqrt(np.sum(np.square(X_train[i] - X_test))) distances.append([distance, i]) distances = sorted(distances) for i in range(k): index = distances[i][1] targets.append(y_train[index]) return Counter(targets).most_common(1)[0][0] 3. 加载数据集: python X_train = np.array([[1, 1], [2, 2], [3, 3], [4, 4], [5, 5]]) # 训练集 y_train = np.array([0, 1, 0, 1, 0]) # 训练集标签 X_test = np.array([6, 6]) # 测试集 4. 调用KNN函数并打印结果: python k = 3 # 设置k值 prediction = KNN(X_train, y_train, X_test, k) print("预测结果:", prediction) 上述代码实现了一个简单的KNN算法,步骤如下: - 计算测试样本与每个训练样本之间的欧几里得距离; - 按距离从小到大排序; - 根据前k个最近邻的标签进行投票; - 返回票数最多的标签作为预测结果。 这样,我们就用Python实现了KNN算法。当然,这只是KNN的基本版本,还有很多改进方法可以尝试,比如优化距离计算,采用加权投票等。
使用KNN算法预测鲍鱼的年龄需要进行以下步骤: 1. 导入数据集,对数据进行预处理,例如特征缩放和数据清洗。 2. 将数据集分为训练集和测试集,一般是将80%的数据作为训练集,20%的数据作为测试集。 3. 使用scikit-learn库中的KNeighborsRegressor算法进行建模和训练。这里需要注意K值的选择,一般需要通过交叉验证等方式来进行确定。 4. 使用测试集进行模型评估,可以使用均方误差等指标来进行评估。如果评估效果不好,可以调整K值或者使用其他算法进行建模。 5. 使用训练好的模型对新数据进行预测。 下面是一个简单的代码示例: python from sklearn.neighbors import KNeighborsRegressor from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error import pandas as pd # 导入数据集 data = pd.read_csv('abalone.csv') # 对数据进行预处理 X = data.iloc[:, :-1] y = data.iloc[:, -1] X = (X - X.mean()) / X.std() # 将数据集分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 建立KNN模型 knn = KNeighborsRegressor(n_neighbors=5) knn.fit(X_train, y_train) # 使用测试集进行模型评估 y_pred = knn.predict(X_test) mse = mean_squared_error(y_test, y_pred) print("均方误差为:", mse) # 使用训练好的模型对新数据进行预测 new_data = pd.DataFrame({'Length': [0.5, 0.6, 0.7], 'Diameter': [0.4, 0.5, 0.6], 'Height': [0.1, 0.2, 0.3], 'Whole weight': [0.1, 0.2, 0.3], 'Shucked weight': [0.05, 0.1, 0.15], 'Viscera weight': [0.03, 0.04, 0.05], 'Shell weight': [0.05, 0.06, 0.07]}) new_data = (new_data - X.mean()) / X.std() y_pred_new = knn.predict(new_data) print("预测结果为:", y_pred_new) 需要注意的是,这只是一个简单的KNN算法预测鲍鱼年龄的示例,实际上预测鲍鱼年龄还需要进行更多的特征工程和模型调参。
### 回答1: 下面是一个使用 Python 编写的 KNN 算法分类 Wine 数据集的示例代码: python import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn import datasets # 加载 Wine 数据集 wine = datasets.load_wine() # 将数据转换为 DataFrame 格式 df = pd.DataFrame(data=np.c_[wine['data'], wine['target']], columns=wine['feature_names'] + ['target']) # 划分数据集 X_train, X_test, y_train, y_test = train_test_split(df.iloc[:, :-1], df.iloc[:, -1], test_size=0.2) # 训练 KNN 分类器 knn = KNeighborsClassifier(n_neighbors=5) knn.fit(X_train, y_train) # 计算准确率 accuracy = knn.score(X_test, y_test) print("Accuracy:", accuracy) # 将数据可视化 colors = ['red', 'green', 'blue'] for target, color in zip(np.unique(wine['target']), colors): indices = np.where(df['target'] == target) plt.scatter(df.iloc[indices, 0], df.iloc[indices, 1], c=color, s=50, alpha=0.7) plt.show() 运行上面的代码,将会先对 Wine 数据集进行 KNN 分类,最后使用 Matplotlib 库绘制出分类结果的散点图,以图形化地表示 Wine 数据集的分类情况。 ### 回答2: K最近邻(K-Nearest Neighbors,KNN)算法是一种常用的分类算法,可以用于对数据集进行分类。在这里,我们使用Python编程来实现使用KNN算法对wine数据集进行分类,并用图形化展示结果。 首先,我们需要导入必要的库。我们使用sklearn库中的load_wine功能加载wine数据集,以及train_test_split函数分割数据集为训练集和测试集。我们还使用matplotlib库中的pyplot模块绘制图形化结果。 以下是代码示例: python import matplotlib.pyplot as plt from sklearn.datasets import load_wine from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier # 加载wine数据集 wine = load_wine() X = wine.data y = wine.target # 将数据集分割为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) # 使用KNN算法进行分类 knn = KNeighborsClassifier() knn.fit(X_train, y_train) y_pred = knn.predict(X_test) # 绘制图形化结果 plt.scatter(X_test[:, 0], X_test[:, 1], c=y_pred) plt.xlabel('Feature 1') plt.ylabel('Feature 2') plt.title('Wine Dataset Classification') plt.show() 以上代码首先导入了所需的库。然后使用load_wine函数加载wine数据集,并将特征数据赋值给X变量,标签数据赋值给y变量。 接下来,我们使用train_test_split函数将数据集分割为训练集和测试集,其中测试集占总数据集的30%。 然后,我们使用KNN算法对训练集进行训练,并使用测试集进行预测。预测结果赋值给y_pred变量。 最后,我们使用scatter函数绘制散点图,其中X轴和Y轴分别表示wine数据集的第一个和第二个特征,分类结果用不同颜色表示。同时,我们还设置了轴标签和图像标题。 在运行代码后,会显示图形化结果,用不同颜色的散点表示不同的分类。这样,我们用Python编程实现了使用KNN算法对wine数据集进行分类,并用图形化表示结果。 ### 回答3: K近邻算法(K-Nearest Neighbors,KNN)是一种基本而常用的机器学习算法,用于分类和回归问题。在这里,我们将使用 Python 编程来实现 KNN 算法并对 Wine 数据集进行分类,并使用图形化来展示分类结果。 首先,我们需要导入必要的 Python 库,包括 pandas、numpy 和 matplotlib。然后,我们将加载 Wine 数据集,该数据集包含有关不同葡萄酒的化学分析结果。 接下来,我们将对数据集进行预处理。我们将数据集中的特征数据存储在 X 中,并将数据集中的标签数据存储在 y 中。然后,我们将数据集划分为训练集和测试集,通常将数据集的 70% 用于训练,30% 用于测试。 接下来,我们将使用 sklearn 库中的 KNeighborsClassifier 类来创建 KNN 分类器。我们可以指定 K 值(即最近的 K 个邻居),这是 KNN 算法的一个重要参数。 然后,我们将使用训练集拟合 KNN 分类器,并使用测试集进行预测。最后,我们将使用图形化工具(如 matplotlib)将测试集中的真实标签和预测标签进行可视化。 下面是一个简单的实现示例: python import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier # 加载数据集 data = pd.read_csv('wine.csv') X = data.drop('Class', axis=1) y = data['Class'] # 数据集划分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) # 创建KNN分类器 knn = KNeighborsClassifier(n_neighbors=3) # 拟合KNN分类器 knn.fit(X_train, y_train) # 使用测试集进行预测 y_pred = knn.predict(X_test) # 可视化分类结果 plt.scatter(X_test['Alcohol'], X_test['Malic acid'], c=y_test) plt.scatter(X_test['Alcohol'], X_test['Malic acid'], c=y_pred, marker='x') plt.xlabel('Alcohol') plt.ylabel('Malic acid') plt.title('KNN Classification') plt.show() 上面的代码是一个简单的 KNN 分类算法实现和可视化示例,其中 wine.csv 是包含有关葡萄酒化学分析结果的 CSV 文件。该代码将数据集划分为训练集和测试集,使用训练集拟合 KNN 分类器,并使用测试集进行预测。最后,使用 matplotlib 图形化工具将测试集中的真实标签和预测标签进行可视化。 这样,我们就实现了 KNN 算法对 Wine 数据集进行分类,并用图形化表示。

最新推荐

300126锐奇股份财务报告资产负债利润现金流量表企业治理结构股票交易研发创新等1391个指标(2007-2022).xlsx

包含1391个指标,其说明文档参考: https://blog.csdn.net/yushibing717/article/details/136115027 数据来源:基于上市公司公告数据整理 数据期间:从具体上市公司上市那一年开始-2022年度的数据,年度数据 包含各上市公司股票的、多年度的上市公司财务报表资产负债表、上市公司财务报表利润表、上市公司财务报表现金流量表间接法、直接法四表合在一个面板里面,方便比较和分析利用 含各个上市公司股票的、多年度的 偿债能力 披露财务指标 比率结构 经营能力 盈利能力 现金流量分析 风险水平 发展能力 每股指标 相对价值指标 股利分配 11类财务指标分析数据合在一个面板里面,方便比较和分析利用 含上市公司公告的公司治理、股权结构、审计、诉讼等数据 包含1391个指标,如: 股票简称 证券ID 注册具体地址 公司办公地址 办公地址邮政编码 董事会秘书 董秘联系电话 董秘传真 董秘电子邮箱 ..... 货币资金 其中:客户资金存款 结算备付金 其中:客户备付金 .........

【路径规划】基于matlab原子搜索算法栅格地图机器人最短路径规划【含Matlab源码 2887期】.mp4

CSDN佛怒唐莲上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作

DAC简介及参考电路PPT学习教案.pptx

DAC简介及参考电路PPT学习教案.pptx

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

OceanBase数据库简介及原理解析

# 1. OceanBase数据库概述 ## 1.1 OceanBase数据库的发展历程 OceanBase数据库是由阿里巴巴集团自主研发的一款分布式关系型数据库系统,起源于阿里集团的业务需求和技术挑战。自2010年开始研发,经过多年的迭代和优化,OceanBase已经成为阿里巴巴集团重要的核心数据库产品之一。在实际的业务场景中,OceanBase已经被广泛应用于金融、电商、物流等各个领域。 ## 1.2 OceanBase数据库的特点和优势 OceanBase数据库具有以下特点和优势: - **分布式架构**:OceanBase采用多副本分布式架构,可以实现高可用和数据容灾。 -

python的pandas读取excel怎么将excel表里的列从1开始而不是0

在 Pandas 中,数据框的列默认从0开始编号,但我们可以通过自定义函数来进行数据列的转换。可以先将读取的数据框列的第一个值设为1,然后对后续列进行递增处理。 以下是示例代码: ```python import pandas as pd # 读取 Excel 文件 df = pd.read_excel('your_excel_file.xlsx') # 定义函数将列从1开始 def reset_column(x): return str(int(x) + 1) # 应用函数到所有列名 df = df.rename(columns=reset_column) # 打印数据框

第三章薪酬水平、薪酬系统的运行与控制.pptx

第三章薪酬水平、薪酬系统的运行与控制.pptx

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依

理解MVC架构:Laravel框架的核心设计

# 1. 第1章 项目立项与概述 ## 1.1 动机 随着互联网的快速发展,Web应用的开发需求不断增加。为了提高开发效率、代码可维护性和团队协作效率,我们决定采用MVC架构来设计我们的Web应用。 ## 1.2 服务器状态 我们的服务器环境采用了LAMP(Linux + Apache + MySQL + PHP)架构,满足了我们Web应用开发的基本需求,但为了更好地支持MVC架构,我们将对服务器进行适当的配置和优化。 ## 1.3 项目立项 经过团队讨论和决定,决定采用Laravel框架来开发我们的Web应用,基于MVC架构进行设计和开发,为此做出了项目立项。 ## 1.4 项目概况

如何将HDFS上的文件读入到Hbase,用java

要将HDFS上的文件读入到HBase,可以使用Java编写MapReduce程序实现,以下是实现步骤: 1. 首先需要创建一个HBase表,可使用HBase Shell或Java API创建; 2. 编写MapReduce程序,其中Map阶段读取HDFS上的文件,将数据转换成Put对象,然后将Put对象写入到HBase表中; 3. 在MapReduce程序中设置HBase表名、列族名、列名等参数; 4. 在程序运行前,需要将HBase相关的jar包和配置文件加入到classpath中; 5. 最后提交MapReduce任务运行即可。 以下是示例代码: ``` Configuration