优化这段import numpy as np import matplotlib.pyplot as plt %config InlineBackend.figure_format='retina' def generate_signal(t_vec, A, phi, noise, freq): Omega = 2*np.pi*freq return A * np.sin(Omega*t_vec + phi) + noise * (2*np.random.random def lock_in_measurement(signal, t_vec, ref_freq): Omega = 2*np.pi*ref_freq ref_0 = 2*np.sin(Omega*t_vec) ref_1 = 2*np.cos(Omega*t_vec) # signal_0 = signal * ref_0 signal_1 = signal * ref_1 # X = np.mean(signal_0) Y = np.mean(signal_1) # A = np.sqrt(X**2+Y**2) phi = np.arctan2(Y,X) print("A=", A, "phi=", phi) # t_vec = np.linspace(0, 0.2, 1001) A = 1 phi = np.pi noise = 0.2 ref_freq = 17.77777 # signal = generate_signal(t_vec, A, phi, noise, ref_freq) # lock_in_measurement(signal, t_vec, ref_freq)
时间: 2024-04-12 08:31:46 浏览: 122
你可以优化这段代码的一些地方。首先,你可以将import语放在代码的开,这样可以更清晰地看到你使用了哪些库。其次,你可以将生成信号和锁相测量的函数封装到一个类中,这样可以更好地组织代码。最后,你可以将生成信号和锁相测量的参数作为函数的参数传递进去,而不是在函数内部硬编码。这样可以增加代码的灵活性。以下是优化后的代码示例:
```python
import numpy as np
import matplotlib.pyplot as plt
class SignalGenerator:
def __init__(self, t_vec, A, phi, noise, freq):
self.t_vec = t_vec
self.A = A
self.phi = phi
self.noise = noise
self.freq = freq
def generate_signal(self):
Omega = 2*np.pi*self.freq
return self.A * np.sin(Omega*self.t_vec + self.phi) + self.noise * (2*np.random.random)
def lock_in_measurement(self, signal, ref_freq):
Omega = 2*np.pi*ref_freq
ref_0 = 2*np.sin(Omega*self.t_vec)
ref_1 = 2*np.cos(Omega*self.t_vec)
signal_0 = signal * ref_0
signal_1 = signal * ref_1
X = np.mean(signal_0)
Y = np.mean(signal_1)
A = np.sqrt(X**2 + Y**2)
phi = np.arctan2(Y, X)
print("A=", A, "phi=", phi)
# 示例使用
t_vec = np.linspace(0, 0.2, 1001)
A = 1
phi = np.pi
noise = 0.2
ref_freq = 17.77777
generator = SignalGenerator(t_vec, A, phi, noise, ref_freq)
signal = generator.generate_signal()
generator.lock_in_measurement(signal, ref_freq)
```
这样,你可以更方便地复用代码,并且可以通过修改构造函数的参数来调整生成信号和锁相测量的设置。
阅读全文