faster rcnn加权重voc
时间: 2024-12-30 19:34:24 浏览: 11
### 使用预训练权重在VOC数据集上部署Faster R-CNN
#### 准备环境与安装依赖库
为了能够在Pascal VOC数据集上运行Faster R-CNN模型,需先设置好开发环境。这通常涉及Python虚拟环境的创建以及必要的机器学习框架和其他工具包的安装。
```bash
conda create -n faster_rcnn python=3.8
conda activate faster_rcnn
pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113
pip install cython matplotlib opencv-python-headless pyyaml scipy tqdm
```
#### 下载并准备VOC数据集
获取官方发布的Pascal VOC数据集,并按照特定结构组织文件夹以便于后续处理:
```bash
cd $HOME/data/
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
tar xf VOCtrainval_11-May-2012.tar
rm VOCtrainval_11-May-2012.tar
```
#### 获取预训练模型权重
利用已有的ImageNet或其他大规模图像识别任务上的预训练参数来初始化网络可以加速收敛过程并提高性能。对于Faster R-CNN而言,可以从PyTorch Model Zoo下载对应的ResNet50-FPN版本作为基础架构[^1]。
```python
import torchvision.models as models
model = models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
```
#### 修改配置适应新数据源
调整默认超参数设定使之更适合当前的任务需求;比如类别数量、输入尺寸等。同时也要确保能够正确读取自定义的数据加载器所返回的信息格式。
```python
num_classes = 21 # Pascal VOC has 20 classes plus background class
in_features = model.roi_heads.box_predictor.cls_score.in_features
model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)
from datasets import VOCDataset
dataset = VOCDataset('path/to/dataset', transform=get_transform(train=True))
data_loader = DataLoader(dataset, batch_size=2, shuffle=True, collate_fn=utils.collate_fn)
```
#### 训练微调后的模型
通过传递新的样本给优化好的神经网络来进行进一步的学习,从而使其更好地适用于特定领域内的物体检测挑战。
```python
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
model.to(device)
params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(params, lr=0.005,
momentum=0.9, weight_decay=0.0005)
len_dataloader = len(data_loader)
for epoch in range(num_epochs):
model.train()
i = 0
for imgs, annotations in data_loader:
i += 1
imgs = list(img.to(device) for img in imgs)
annotations = [{k: v.to(device) for k, v in t.items()} for t in annotations]
loss_dict = model(imgs, annotations)
losses = sum(loss for loss in loss_dict.values())
optimizer.zero_grad()
losses.backward()
optimizer.step()
print(f"Iteration: {i}/{len_dataloader}, Loss: {losses}")
```
阅读全文