我需要多输入变量多步预测的pytorch 程序
时间: 2023-08-31 18:09:47 浏览: 65
好的,以下是一个基本的多输入变量多步预测的 PyTorch 程序示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
# 定义模型类
class MultiInputMultiStepModel(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super().__init__()
self.hidden_size = hidden_size
self.rnn = nn.RNN(input_size, hidden_size, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x):
# x 的形状为 (batch_size, sequence_length, input_size)
batch_size = x.size(0)
hidden = self.init_hidden(batch_size)
out, hidden = self.rnn(x, hidden)
out = self.fc(out)
# out 的形状为 (batch_size, sequence_length, output_size)
return out
def init_hidden(self, batch_size):
return torch.zeros(1, batch_size, self.hidden_size)
# 定义训练函数
def train(model, train_loader, criterion, optimizer):
model.train()
total_loss = 0.0
for inputs, targets in train_loader:
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
total_loss += loss.item()
return total_loss / len(train_loader)
# 定义测试函数
def test(model, test_loader, criterion):
model.eval()
total_loss = 0.0
with torch.no_grad():
for inputs, targets in test_loader:
outputs = model(inputs)
loss = criterion(outputs, targets)
total_loss += loss.item()
return total_loss / len(test_loader)
# 定义数据集类
class MultiInputMultiStepDataset(torch.utils.data.Dataset):
def __init__(self, inputs, targets):
self.inputs = inputs
self.targets = targets
def __len__(self):
return len(self.inputs)
def __getitem__(self, idx):
return self.inputs[idx], self.targets[idx]
# 定义训练数据和测试数据
train_inputs = torch.randn(100, 10, 3)
train_targets = torch.randn(100, 5, 2)
test_inputs = torch.randn(20, 10, 3)
test_targets = torch.randn(20, 5, 2)
# 将数据封装成 DataLoader
train_dataset = MultiInputMultiStepDataset(train_inputs, train_targets)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=10, shuffle=True)
test_dataset = MultiInputMultiStepDataset(test_inputs, test_targets)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=10, shuffle=True)
# 初始化模型、损失函数和优化器
model = MultiInputMultiStepModel(input_size=3, hidden_size=10, output_size=2)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters())
# 训练模型
for epoch in range(10):
train_loss = train(model, train_loader, criterion, optimizer)
test_loss = test(model, test_loader, criterion)
print(f"Epoch {epoch+1}: train loss={train_loss:.6f}, test loss={test_loss:.6f}")
```
这个示例程序实现了一个多输入变量多步预测的 RNN 模型,使用了 PyTorch 中的 Dataset 和 DataLoader 来加载数据,并使用了 Adam 优化器来训练模型。你可以根据自己的数据和需求来修改和扩展这个程序。
阅读全文