用python和gurobi编程代码,代码内容如下:考虑电动汽车、火电和新能源的日前经济调度。
时间: 2024-10-15 18:23:51 浏览: 29
用python和gurobi解决车辆路径问题
在Python中使用Gurobi优化库解决电动汽车、火电和新能源的日前经济调度问题,首先需要安装Gurobi Python接口(`gurobipy`),然后构建数学模型描述决策变量和约束条件。下面是一个简单的示例代码,假设我们有一个目标函数(如总成本最小化),有电力需求、发电能力和存储容量等限制:
```python
import gurobipy as gp
from gurobipy import GRB
# 定义模型
m = gp.Model("EconomicDispatch")
# 参数定义
demand = ... # 日前电力需求列表
capacity_electric = ... # 电动汽车储能能力
capacity_fossil = ... # 火电站发电能力
capacity_renewable = ... # 新能源发电能力
cost_electric_vehicle = ... # 电动汽车充电成本
cost_fossil = ... # 火电成本
cost_renewable = ... # 新能源成本
# 决策变量
electric_vehicle_charging = m.addVars(demand.index, lb=0, ub=capacity_electric, vtype=GRB.CONTINUOUS) # 电动汽车充电量
fossil_generation = m.addVars(demand.index, lb=0, ub=capacity_fossil, vtype=GRB.CONTINUOUS) # 火电发电量
renewable_generation = m.addVars(demand.index, lb=0, ub=capacity_renewable, vtype=GRB.CONTINUOUS) # 新能源发电量
# 目标函数:总成本最小化
objective = sum(cost_electric_vehicle[i] * electric_vehicle_charging[i]
+ cost_fossil[i] * fossil_generation[i]
+ cost_renewable[i] * renewable_generation[i] for i in demand.index)
m.setObjective(objective, GRB.MINIMIZE)
# 约束条件:满足需求
for i in demand.index:
m.addConstr(electric_vehicle_charging[i].sum() + fossil_generation[i] + renewable_generation[i] == demand[i])
# 运行优化
m.optimize()
# 输出结果
if m.status == GRB.OPTIMAL:
print(f"最优解:")
print(f"电动汽车充电量:{electric_vehicle_charging.X}")
print(f"火电发电量:{fossil_generation.X}")
print(f"新能源发电量:{renewable_generation.X}")
else:
print(f"求解未能得到最优解,状态码:{m.status}")
阅读全文