基于weka3.8.6平台的朴素贝叶斯分类代码,要求:不调用平台自带的NaiveBayes()函数,自我实现
时间: 2024-02-13 11:04:24 浏览: 114
不使用sklearn推演高斯朴素贝叶斯分类器
好的,以下是基于Weka 3.8.6平台的朴素贝叶斯分类代码,不使用平台自带的NaiveBayes()函数,自我实现:
```java
import weka.core.Instance;
import weka.core.Instances;
import weka.core.converters.ConverterUtils.DataSource;
public class NaiveBayesClassifier {
public static void main(String[] args) throws Exception {
// 加载数据集
DataSource source = new DataSource("path/to/your/dataset.arff");
Instances dataset = source.getDataSet();
// 设置类别属性
if (dataset.classIndex() == -1)
dataset.setClassIndex(dataset.numAttributes() - 1);
// 计算类别先验概率和条件概率
double[] classCounts = new double[dataset.numClasses()];
double[][][] condProbs = new double[dataset.numAttributes()-1][dataset.numClasses()][];
for (int i = 0; i < dataset.numInstances(); i++) {
Instance instance = dataset.instance(i);
int classValue = (int)instance.classValue();
classCounts[classValue]++;
for (int j = 0; j < dataset.numAttributes()-1; j++) {
int attrValue = (int)instance.value(j);
if (condProbs[j][classValue] == null) {
condProbs[j][classValue] = new double[dataset.attribute(j).numValues()];
}
condProbs[j][classValue][attrValue]++;
}
}
for (int i = 0; i < dataset.numClasses(); i++) {
for (int j = 0; j < dataset.numAttributes()-1; j++) {
if (condProbs[j][i] != null) {
for (int k = 0; k < condProbs[j][i].length; k++) {
condProbs[j][i][k] = (condProbs[j][i][k] + 1) / (classCounts[i] + dataset.attribute(j).numValues());
}
}
}
}
// 对测试数据进行分类
for (int i = 0; i < dataset.numInstances(); i++) {
Instance instance = dataset.instance(i);
int predictClass = -1;
double maxProb = Double.NEGATIVE_INFINITY;
for (int j = 0; j < dataset.numClasses(); j++) {
double prob = Math.log(classCounts[j]);
for (int k = 0; k < dataset.numAttributes()-1; k++) {
int attrValue = (int)instance.value(k);
if (condProbs[k][j] != null) {
prob += Math.log(condProbs[k][j][attrValue]);
}
}
if (prob > maxProb) {
maxProb = prob;
predictClass = j;
}
}
System.out.println("Instance " + i + " is classified as class " + predictClass);
}
}
}
```
其中,"path/to/your/dataset.arff"需要替换成你自己的数据集路径。这段代码首先计算了类别先验概率和条件概率,然后对每个测试实例进行分类,并输出分类结果。
阅读全文